Implementation of the Nonlocal Microplane Concrete Model Within an Explicit Dynamic Finite Element Program

1992 ◽  
Vol 45 (3S) ◽  
pp. S132-S139 ◽  
Author(s):  
William F. Cofer

The microplane concrete material model is based upon assumptions regarding the behavior of the material components. At any point, the response to the strain tensor on arbitrarily oriented surfaces is considered. Simple, softening stress-strain relationships are assumed in directions perpendicular and parallel to the surfaces. The macroscopic material behavior is then composed of the sum of the effects. The implementation of this model into the explicit, nonlinear, dynamic finite element program, DYNA3D, is described. To avoid the spurious mesh sensitivity that accompanies material failure, a weighted integral strain averaging approach is used to ensure that softening is nonlocal. This method is shown to be effective for limiting the failure zone in a concrete rod subjected to an impulse loading.

2007 ◽  
Vol 344 ◽  
pp. 341-348
Author(s):  
Mehmet Ali Pişkin ◽  
Bilgin Kaftanoğlu

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no defects. In this work, a finite element method is developed to simulate deep-drawing operation including wrinkling. A four nodded five degree of freedom shell element is formulated. Isotropic elasto-plastic material model with Von Mises yield criterion is used. By using this shell element, the developed code can predict the bending behavior of workpiece besides membrane behavior. Simulations are carried out with four different element sizes. The thickness strain and nodal displacement values obtained are compared with results of a commercial finite element program and results of previously conducted experiments.


Author(s):  
K W Dalgarno ◽  
A J Day ◽  
T H C Childs

This paper describes a finite element analysis of a synchronous belt tooth under operational loads and conditions with the objective of obtaining a greater understanding of belt failure by tooth root cracking through an examination of the strains within the facing fabric in the belt. The analysis used the ABAQUS finite element program, and was based on a two-dimensional finite element model incorporating a hyperelastic material model for the elastomer compound. Contact between the belt tooth face and the pulley groove was modelled using surface interface elements which allowed only compression and shear forces at the contact surfaces. It is concluded that the critical strains in the facing fabric of the belt, and therefore the belt life, are largely determined by the tangential loading condition on the belt teeth.


2013 ◽  
Vol 353-356 ◽  
pp. 502-506
Author(s):  
Fu Yuan Zhang ◽  
Deng Yuan Zhu ◽  
Shou Ren Ge ◽  
Xiao Bao Sun

Based on Abaqus/explicit dynamics finite element program, an ax symmetrical numerical model, the infinite fringe condition and friction contact condition were built, and then the surface contact stress condition of the dynamic consolidation was studied. The time-load properties of dynamic consolidation, the spread law of contact pressure for rammer bottom and the friction influence to contact stress between the hammer and foundation were gained. The results indicate that the dynamic consolidation load can be simplified to triangular load with the weight of the hammer itself; the contact stress distribution between the hammer and the foundation is not uniform; and frictionless contact hypothesis can led errors to the simulated result.


1996 ◽  
Vol 118 (4) ◽  
pp. 503-508 ◽  
Author(s):  
G. E. Vallee ◽  
Arun Shukla

A numerical method is described for determining a dynamic finite element material model for elastomeric materials loaded primarily in compression. The method employs data obtained using the Split Hopkinson Pressure Bar (SHPB) technique to define a molecular constitutive model for elastomers. The molecular theory is then used to predict dynamic material behavior in several additional deformation modes used by the ABAQUS/Explicit (Hibbitt, Karlsson, and Sorenson, 1993a) commercial finite element program to define hyperelastic material behavior. The resulting dynamic material models are used to create a finite element model of the SHPB system, yielding insights into both the accuracy of the material models and the SHPB technique itself when used to determine the dynamic behavior of elastomeric materials. Impact loading of larger elastomeric specimens whose size prohibits examination by the SHPB technique are examined and compared to the results of dynamic load-deflection experiments to further verify the dynamic material models.


1975 ◽  
Vol 97 (3) ◽  
pp. 172-177 ◽  
Author(s):  
T. Belytschko ◽  
J. M. Kennedy

The attenuation of pressure waves by the subassembly walls in a reactor core was studied by a two dimensional, finite element program. For these purposes, a hydro-dynamic finite element was incorporated in an existing dynamic structural program. The resulting program has the advantage that complex boundary conditions and the interaction of structural and fluid elements are handled in a straightforward manner. The program was used to model a section of the hexcan and the surrounding fluid; the hexcan was modelled by beam elements. It is shown that the hexcan walls attenuate pressure peaks by about 33 percent in the adjacent subassembly. Thus the subassembly walls may play an important role in confining the effects of local accidents.


Author(s):  
B. Krevet ◽  
M. Kohl ◽  
V. Pinneker

This paper presents a finite element model and simulation results on the performance of a novel linear actuator using the magnetic shape memory (MSM) effect in a Ni-Mn-Ga foil loaded by a mechanical spring. We present finite element simulations with a material model based on the thermodynamic Gibbs free energy in a finite element program (FEM) using beam elements, which is combined with an integral magnetic solver. The simulations qualitatively describe the observed tensile stress-dependence of magneto strain of a first demonstrator of a MSM foil actuator. We demonstrate that complete reversible cycles of the magnetic field induced strain are possible if the spring is preloaded to induce a prestress in the foil. The effect of inhomogeneous material on variant reorientation and corresponding magneto strain are discussed.


1994 ◽  
Vol 1 (6) ◽  
pp. 559-568
Author(s):  
David R. Lemmon ◽  
Ming-yi Wu ◽  
Ronald L. Huston

This article presents and discusses automobile hood/fender rail design to reduce head injury of pedestrians struck by the front of the vehicle. Fender seam designs are presented that reduce the head injury criterion values by over 50%. The procedures and analysis are conducted using a nonlinear dynamic finite element program for an Oldsmobile Ciera hood and a Ford Taurus hood/fender.


1998 ◽  
Vol 120 (1) ◽  
pp. 62-70 ◽  
Author(s):  
M. A. Puso ◽  
J. A. Weiss

The objective of this work was to develop a theoretical and computational framework to apply the finite element method to anisotropic, viscoelastic soft tissues. The quasi-linear viscoelastic (QLV) theory provided the basis for the development. To allow efficient and easy computational implementation, a discrete spectrum approximation was developed for the QLV relaxation function. This approximation provided a graphic means to fit experimental data with an exponential series. A transversely isotropic hyperelastic material model developed for ligaments and tendons was used for the elastic response. The viscoelastic material model was implemented in a general-purpose, nonlinear finite element program. Test problems were analyzed to assess the performance of the discrete spectrum approximation and the accuracy of the finite element implementation. Results indicated that the formulation can reproduce the anisotropy and time-dependent material behavior observed in soft tissues. Application of the formulation to the analysis of the human femur-medial collateral ligament–tibia complex demonstrated the ability of the formulation to analyze large three-dimensional problems in the mechanics of biological joints.


Sign in / Sign up

Export Citation Format

Share Document