The Material Properties of Bone-Particle Impregnated PMMA

1986 ◽  
Vol 108 (2) ◽  
pp. 141-148 ◽  
Author(s):  
H. C. Park ◽  
Y. K. Liu ◽  
R. S. Lakes

The elastic Young’s modulus and shear modulus of bone-particle impregnated polymethylmethacrylate (PMMA) has been measured experimentally at room temperature as a function of bone particle concentration. It was found that the moduli increased with increasing bone particle content. This increase was less than the stiffness increase predicted by higher-order composite theory [1, 2] under the assumption of perfect bonding between particles and matrix. It was concluded that a bond existed but that it was not a perfect bond.

2010 ◽  
Vol 160-162 ◽  
pp. 1691-1698 ◽  
Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
Peng Liu ◽  
Xu Liang Deng ◽  
Qing Cai ◽  
...  

This study aimed at investigating the effects of the post material properties on the maximum stress in the root and maximum deformation of the restorative system. Effects of material properties of fiber post on the maximum equivalent stress in the root and the maximum deformation of the restorative system were numerically investigated. Results show that the maximum equivalent stress in the root can be decreased by 8.3% and the maximum deformation of the restorative system decreased by 10% compared with corresponding maximum values if changing Young’s modulus, Shear modulus and Poisson’s ratio in the range studied here. The maximum equivalent stress in the root is more sensitive to Young’s modulus and Poisson’s ratio while the deformation of the restorative system is more seriously affected by the Shear modulus of the post material.


2010 ◽  
Vol 504 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Robert D. Schmidt ◽  
Jennifer E. Ni ◽  
Eldon D. Case ◽  
Jeffery S. Sakamoto ◽  
Daniel C. Kleinow ◽  
...  

2010 ◽  
Vol 170 (1-3) ◽  
pp. 58-66 ◽  
Author(s):  
Jennifer E. Ni ◽  
Eldon D. Case ◽  
Kristen N. Khabir ◽  
Ryan C. Stewart ◽  
Chun-I. Wu ◽  
...  

Author(s):  
SHULEI SUN ◽  
XIONGQI PENG ◽  
ZAOYANG GUO

Polymer matrix filled with ferromagnetic particles is a class of smart materials whose mechanical properties can be changed under different magnetic field. They are usually referred to as magnetorheological elastomers (MREs). A finite element simulation was presented to describe the mechanical behavior of MREs with the nonlinearity of the particle magnetization being incorporated. By introducing the Maxwell stress tensor, a representative volume element (RVE) was proposed to calculate the Young's modulus and shear modulus of MREs due to the applied magnetic field. The influences of the applied magnetic field and the particle volume fractions in the shear modulus and Young's modulus were studied. Results show that the shear modulus increases with the magnitude of the applied magnetic field, while the Young's modulus decreases.


2016 ◽  
Vol 18 (31) ◽  
pp. 21508-21517 ◽  
Author(s):  
Xiao-Ye Zhou ◽  
Bao-Ling Huang ◽  
Tong-Yi Zhang

Surfaces of nanomaterials play an essential role in size-dependent material properties.


2021 ◽  
Vol 64 (6) ◽  
pp. 2025-2034
Author(s):  
Matthew W Schramm ◽  
Mehari Z. Tekeste ◽  
Brian L Steward

HighlightsSimulation of uniaxial compression was performed with flexible fibers modeled in DEM.Bond-specific DEM parameters were found to be sensitive in uniaxial compression.A calibration technique that is not plunger-dependent is shown and validated.Abstract. To accurately simulate a discrete element method (DEM) model, the material properties must be calibrated to reproduce bulk material behavior. In this study, a method was developed to calibrate DEM parameters for bulk fibrous materials using uniaxial compression. Wheat straw was cut to 100.2 mm lengths. A 227 mm diameter cylindrical container was loosely filled with the cut straw. The material was pre-compressed to 1 kPa. A plunger (50, 150, or 225 mm diameter) was then lowered onto the compressed straw at a rate of 15 mm s-1. This experimental procedure was simulated using a DEM model for different material properties to generate a simulated design of experiment (DOE). The simulated plunger had a travel rate of 40 mm s-1. The contact Young’s modulus, bond Young’s modulus, and particle-to-particle friction DEM parameters were found to be statistically significant in the prediction of normal forces on the plunger in the uniaxial compression test. The DEM calibration procedure was used to approximate the mean laboratory results of wheat straw compression with root mean square (RMS) percent errors of 3.77%, 3.02%, and 13.90% for the 50, 150, and 225 mm plungers, respectively. Keywords: Calibration, DEM, DOE, Flexible DEM particle, Uniaxial compression, Wheat straw.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Brent D. Opell ◽  
Sarah D. Stellwagen

AbstractAn orb web’s prey capture thread relies on its glue droplets to retain insects until a spider can subdue them. Each droplet’s viscoelastic glycoprotein adhesive core extends to dissipate the forces of prey struggle as it transfers force to stiffer, support line flagelliform fibers. In large orb webs, switchback capture thread turns are placed at the bottom of the web before a continuous capture spiral progresses from the web’s periphery to its interior. To determine if the properties of capture thread droplets change during web spinning, we characterized droplet and glycoprotein volumes and material properties from the bottom, top, middle, and inner regions of webs. Both droplet and glycoprotein volume decreased during web construction, but there was a progressive increase in the glycoprotein’s Young’s modulus and toughness. Increases in the percentage of droplet aqueous material indicated that these increases in material properties are not due to reduced glycoprotein viscosity resulting from lower droplet hygroscopicity. Instead, they may result from changes in aqueous layer compounds that condition the glycoprotein. A 6-fold difference in glycoprotein toughness and a 70-fold difference in Young’s modulus across a web documents the phenotypic plasticity of this natural adhesive and its potential to inspire new materials.


Sign in / Sign up

Export Citation Format

Share Document