Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions

2009 ◽  
Vol 131 (7) ◽  
Author(s):  
M. Torresi ◽  
S. M. Camporeale ◽  
G. Pascazio

This paper presents the results of the numerical simulations carried out to evaluate the performance of a high solidity Wells turbine designed for an oscillating water column wave energy conversion device. The Wells turbine has several favorable features (e.g., simplicity and high rotational speed) but is characterized by a relatively narrow operating range with high efficiency. The aim of this work is to investigate the flow-field through the turbine blades in order to offer a description of the complex flow mechanism that originates separation and, consequently, low efficiency at high flow-rates. Simulations have been performed by solving the Reynolds-averaged Navier–Stokes equations together with three turbulence models, namely, the Spalart–Allmaras, k-ω, and Reynolds-stress models. The capability of the three models to provide an accurate prediction of the complex flow through the Wells turbine has been assessed in two ways: the comparison of the computed results with the available experimental data and the analysis of the flow by means of the anisotropy invariant maps. Then, a detailed description of the flow at different flow-rates is provided, focusing on the interaction of the tip-leakage flow with the main stream and enlightening its role on the turbine performance.

2000 ◽  
Author(s):  
Yumin Xiao ◽  
R. S. Amano

Abstract In this paper a high efficiency labyrinth seal and the staggered labyrinth seal for shrouded blades was presented. The flows in the seal with single, double, and triple tip seals were simulated by solving the two-dimensional Reynolds-averaged Navier-Stokes equations (RANS) and a compressible k-ε turbulence model. A multi-zone technique was used to generate the grids in the complex flow channel. The calculation results showed that the presently proposed staggered labyrinth seal is more efficient than the typical one and the leakage flow rate is dominated by the minimum flow area and the pressure difference. Comparing the performance with the typical labyrinth seal, the present staggered labyrinth seal model can average the total pressure drop among the seals, while the typical one induces a sharp drop across the first tooth. It showed that the leakage flow rate varies as a function of the number of seals to the power of −0.45. For the cases of multiple-seals the space between two seals has little effect on the total mass flow rate. Finally, decreasing the wall temperature will result in an increase of leakage flow.


Author(s):  
Yo Han Jung ◽  
Young Uk Min ◽  
Jin Young Kim

This paper presents a numerical investigation of the effect of tip clearance on the suction performance and flow characteristics at different flow rates in a vertical mixed-flow pump. Numerical analyses were carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations. Steady computations were performed for three different tip clearances under noncavitating and cavitating conditions at design and off-design conditions. The pump performance test was performed for the mixed-flow pump and numerical results were validated by comparing the experimental data for a system characterized by the original tip clearance. It was shown that for large tip clearance, the head breakdown occurred earlier at the design and high flow rates. However, the head breakdown was quite delayed at low flow rate. This resulted from the cavitation structure caused by the tip leakage flow at different flow rates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anuj Kumar Shukla ◽  
Anupam Dewan

Purpose Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration. Design/methodology/approach Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes. Findings It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number. Originality/value Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.


Author(s):  
W. R. Briley ◽  
D. V. Roscoe ◽  
H. J. Gibeling ◽  
R. C. Buggeln ◽  
J. S. Sabnis ◽  
...  

Three-dimensional solutions of the ensemble-averaged Navier-Stokes equations have been computed for a high-turning turbine rotor passage, both with and without tip clearance effects. The geometry is Pratt & Whitney’s preliminary design for the Generic Gas Generator Turbine (GGGT), having an axial chord of 0.5 inch and turning angle of about 160 degrees. The solutions match the design Reynolds number of 3x 106/inch and design inflow/outflow distributions of flow quantities. The grid contains 627,000 points, including 20 radial points in the clearance gap of 0.015 inch, and has a minimum spacing of 10−4 inch adjacent to all surfaces. The solutions account for relative motion of the blade and shroud surfaces and include a backstep on the shroud. Computed results are presented which show the general flow behavior, especially near the tip clearance and backstep regions. The results are generally consistent with experimental observations for other geometries having thinner blades and smaller turning angles. The leakage flow includes some fluid originally in the freestream at 91 percent span. Downstream, the leakage flow behaves as a wall jet directed at 100 degrees to the main stream, with total pressure and temperature higher than the freestream. Radial distributions of circumferentially-averaged flow quantities are compared for solutions with and without tip leakage flow. Two-dimensional solutions are also presented for the mid-span blade geometry for design and off-design inflow angles.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1061 ◽  
Author(s):  
Ji-Hye Kim ◽  
Myoung-Souk Yeo

Ventilation and filtration control play a critical role in determining indoor PM2.5 (particles less than 2.5 μm in aerodynamic diameter) concentrations of outdoor or indoor origin in residential environments. The objective of this study was to investigate the combined effects of flow rates and filter efficiency on indoor PM2.5 concentrations of residential buildings in Seoul, Korea. Using a particle model based on a mass–balance equation, parametric analysis was performed to examine indoor PM2.5 concentrations according to flow rates and filter efficiency under a wide range of outdoor concentrations and indoor generations. Results showed that ventilation control equipped with a medium–efficiency filter was as effective as that with a high-efficiency filter under normal outdoor concentration and high indoor generation rate conditions. It is not recommended to apply a low-efficiency filter because indoor concentration increases rapidly as outdoor PM2.5 increases when ventilation flow rate is high. For filtration control, it is important to increase both flow rate and filter efficiency in order to improve indoor PM2.5 concentration.


Author(s):  
Matthias Semel ◽  
Henrik Smith ◽  
Philipp Epple ◽  
Oliver Litfin ◽  
Antonio Delgado ◽  
...  

In vacuum cleaners radial impellers with high rotational speed are very often used. A high rotational speed is connected with a best efficiency point of the radial impeller at a high flow rate. This is contrary to the working point of the whole system. Thus there is need for a radial impeller designs having a high efficiency at low flow rates under the restriction of a high rotational speed. One important parameter connected to the hydraulic efficiency characteristics of the radial impeller is the blade inflow angle β1. In order to shift the best efficiency point towards lower flow rates radial impellers with double curved blades and a linear β1 distribution were designed and CFD simulations were done in order to investigate the effect of this approach. A linear variation of the inflow angle β1 enables the designer to shift the efficiency characteristics of the impeller towards lower flow rates with a gain in hydraulic efficiency and pressure increase.


Author(s):  
Peng Yan ◽  
Peng Wu ◽  
Dazhuan Wu

In this study, a double volute centrifugal pump of relative low efficiency and high vibration was redesigned with the aid of unsteady CFD analyses. The local Euler head distribution (LEHD) representing the energy growth from the blade leading edge to trailing edge on s1 stream surface in a viscous flow field was introduced to evaluate the flow on s1 stream surfaces from hub to shroud. To investigate the unsteady internal flow of the centrifugal pump, the unsteady Reynolds-averaged Navier-Stokes equations (URANS) were solved with realizable k-ε turbulence model using the CFD code FLUENT. The impeller was redesigned with the same outlet diameter as prototype pump. A two-step-form LEHD was recommended to suppress flow separation and secondary flow encountered in the prototype impeller to improve the efficiency. The splitter was added to improve the hydraulic performance and reduce unsteady radial forces. The original double volute was substituted by a newly designed single volute. The hydraulic efficiency of the redesigned centrifugal pump is 89.2%, 3.2% higher than the prototype pump. The pressure fluctuation in volute is significantly reduced and the mean and max values of unsteady radial force are only 30% and 26.5% of the prototype pump.


Author(s):  
Yumin Xiao ◽  
R. S. Amano

In this paper the flows over shrouded turbine blades with single, double, and triple tip seals were simulated by using the two-dimensional Reynolds-averaged Navier-Stokes equations and a compressible k-ε turbulence model. A multi-zone technique was used to generate the grids in the complex flow channel. The calculation results showed that the flow in the seal channel is very complicated and the leakage flow rate is dominated by the minimum flow area and the pressure difference. It showed that the leakage flow rate varies as a function of the number of seals to the power of −0.45. For the cases of multiple-seals the space between two seals has little effect on the total mass flow rate. Finally, it appears there is not a simple function between the leakage flow and the pressure difference.


2005 ◽  
Vol 127 (2) ◽  
pp. 223-233 ◽  
Author(s):  
I. G. Nikolaou ◽  
E. S. Politis ◽  
P. K. Chaviaropoulos

Vortex generators (VGs) are commonly used for trimming the aerodynamic and aeroelastic performance of wind turbine blades by delaying flow separation. There is therefore a need for the development of reliable, still computationally affordable, models for blade designers to use to predict and enhance the aerodynamic characteristics of airfoils equipped with VGs. Such a model is proposed in the present paper, addressing in particular near-stall and post-stall airfoil performance. Starting from the three-dimensional Navier–Stokes equations that essentially describe the complex flow around a blade/VG configuration, a spanwise averaging procedure is applied, resulting in an equivalent set of two-dimensional equations, enriched with extra source terms. These terms are modelled using elementary vortex flow theory. In turbulent flows, the production term of the turbulent kinetic energy is also augmented by the vorticity induced by the VG. The model is evaluated by studying the flow past a blade section with and without VGs. An analysis of the performance of nine alternative VG configurations is also presented to demonstrate the sensitivity of the airfoil polars to the VG geometric parameters.


2014 ◽  
Vol 592-594 ◽  
pp. 1125-1129 ◽  
Author(s):  
T. Micha Premkumar ◽  
M.A. Ashish ◽  
T. Banu Prakash ◽  
D. Thulasiram

In this paper numerical simulation is carried out using commercially available tool Fluent® to predict the performance of a Wells turbine in an oscillating water column wave energy convertor. A wells turbine is the turbo machinery that rotates in same direction as the air flow through the turbine in either axial direction. The main aim of this investigation is to predict complex flow mechanism like separation and recirculation around the turbine blades and subsequently reduction in torque coefficient at higher flow rate. Numerical simulations have been executed by solving the RANS equations together with k-w SST turbulence model. Then a detailed description of flow and overall performance analysis at different flow rate is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document