An Experimental Investigation of the Flowfield and Dust Resuspension Due to Idealized Human Walking

2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Yoshihiro Kubota ◽  
Joseph W. Hall ◽  
Hiroshi Higuchi

In order to address how human foot movement causes particles to be resuspended from the floor, particle flow visualization and particle image velocimetry (PIV) measurements were performed on a simplified model of the human walking motion; a disk moving normal to the floor. Flow visualization of particles, seeded initially on the ground, indicates that particles are resuspended by both the downward and upward motions of the walking process. On both the upstep and the downstep, particle resuspension occurs due to a high velocity wall jet, forming between the wall and the disk in general accord with the mechanism for particle resuspension put forth by Khalifa and Elhadidi (2007, “Particle Levitation Due to a Uniformly Descending Flat Object,” Aerosol Sci. Technol., 41, pp. 33–42). Large-scale ring vortex structures were formed on both the downstep and the upstep, and did not cause particle resuspension, but were extremely effective at quickly moving the already resuspended particles away from the wall. By varying the seeding of the particles, it was determined that only particles underneath and toward the outer edge of the disk are resuspended.

Author(s):  
Yoshihiro Kubota ◽  
Joseph W. Hall ◽  
Hiroshi Higuchi

To better understand how human movement causes particles to be resuspended from the ground, we performed flow visualization and PIV measurements on idealized human walking, a disk moved normal to the ground. The flow visualization indicates that particles are resuspended on both the down step and the up step of the walking process by a purely aerodynamic mechanism. The results suggest that a wall jet formed beneath the disk is responsible for particle resuspension, whereas large scale vortices created in the wake of the disk are responsible for the rapid redistribution of the resuspended particles.


Author(s):  
Yoshihiro Kubota ◽  
Hiroshi Higuchi

Human foot motions such as walking and foot tapping detach the particulate matter on the floor and redistribute it, increasing the particle concentration in air. The objective of this paper is to experimentally investigate the mechanism of particle resuspension and redistribution due to human foot motion. In particular, generation and deformation of vortex produced by the foot motion and how they are affected by the shape of sole have been examined. The experiments were carried out by particle flow visualization and the Particle Image Velocimetry (PIV) measurements in air, and dye flow visualization in water. The flow visualizations with human foot tapping and stomping were also carried out in order to elucidate the particle resuspension in real situations. In a laboratory experiment, the foot was modeled either as an elongated plate or a foot wearing a slipper, moving normal to the ground downward or upward. To focus on the aerodynamic effect, the model foot was stopped immediately above the floor before contacting the floor. The results indicated that the particles were resuspended both in downward motion and in upward motion of the foot. The particle resuspension and redistribution were associated with the wall jet between the foot and floor and the vortex dynamics. With an elongated plate, three-dimensional vortex structure strongly affected the particle redistribution.


Author(s):  
Yanzhe Sun ◽  
Kai Sun ◽  
Tianyou Wang ◽  
Yufeng Li ◽  
Zhen Lu

Emission and fuel consumption in swirl-supported diesel engines strongly depend on the in-cylinder turbulent flows. But the physical effects of squish flow on the tangential flow and turbulence production are still far from well understood. To identify the effects of squish flow, Particle image velocimetry (PIV) experiments are performed in a motored optical diesel engine equipped with different bowls. By comparing and associating the large-scale flow and turbulent kinetic energy (k), the main effects of the squish flow are clarified. The effect of squish flow on the turbulence production in the r−θ plane lies in the axial-asymmetry of the annular distribution of radial flow and the deviation between the ensemble-averaged swirl field and rigid body swirl field. Larger squish flow could promote the swirl center to move to the cylinder axis and reduce the deformation of swirl center, which could decrease the axial-asymmetry of annular distribution of radial flow, further, that results in a lower turbulence production of the shear stress. Moreover, larger squish flow increases the radial fluctuation velocity which makes a similar contribution to k with the tangential component. The understanding of the squish flow and its correlations with tangential flow and turbulence obtained in this study is beneficial to design and optimize the in-cylinder turbulent flow.


Author(s):  
Christopher Pagano ◽  
Flavia Tauro ◽  
Salvatore Grimaldi ◽  
Maurizio Porfiri

Large scale particle image velocimetry (LSPIV) is a nonintrusive environmental monitoring methodology that allows for continuous characterization of surface flows in natural catchments. Despite its promise, the implementation of LSPIV in natural environments is limited to areas accessible to human operators. In this work, we propose a novel experimental configuration that allows for unsupervised LSPIV over large water bodies. Specifically, we design, develop, and characterize a lightweight, low cost, and stable quadricopter hosting a digital acquisition system. An active gimbal maintains the camera lens orthogonal to the water surface, thus preventing severe image distortions. Field experiments are performed to characterize the vehicle and assess the feasibility of the approach. We demonstrate that the quadricopter can hover above an area of 1×1m2 for 4–5 minutes with a payload of 500g. Further, LSPIV measurements on a natural stream confirm that the methodology can be reliably used for surface flow studies.


2016 ◽  
Vol 794 ◽  
Author(s):  
Antoine Campagne ◽  
Nathanaël Machicoane ◽  
Basile Gallet ◽  
Pierre-Philippe Cortet ◽  
Frédéric Moisy

What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at a constant angular velocity ${\it\omega}$ in a water tank mounted on a platform rotating at a rate ${\it\Omega}$. We report a dramatic reduction in drag as ${\it\Omega}$ increases, down to values as low as 12 % of the non-rotating drag. At small Rossby number $Ro={\it\omega}/{\it\Omega}$, the decrease in the drag coefficient $K$ follows the approximate scaling law $K\sim Ro$, which is predicted in the framework of nonlinear inertial-wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction instead originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.


2013 ◽  
Vol 47 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Yoshihiro Kubota ◽  
Hiroshi Higuchi

2021 ◽  
Author(s):  
Silvano Fortunato Dal Sasso ◽  
Alonso Pizarro ◽  
Sophie Pearce ◽  
Ian Maddock ◽  
Matthew T. Perks ◽  
...  

<p>Optical sensors coupled with image velocimetry techniques are becoming popular for river monitoring applications. In this context, new opportunities and challenges are growing for the research community aimed to: i) define standardized practices and methodologies; and ii) overcome some recognized uncertainty at the field scale. At this regard, the accuracy of image velocimetry techniques strongly depends on the occurrence and distribution of visible features on the water surface in consecutive frames. In a natural environment, the amount, spatial distribution and visibility of natural features on river surface are continuously challenging because of environmental factors and hydraulic conditions. The dimensionless seeding distribution index (SDI), recently introduced by Pizarro et al., 2020a,b and Dal Sasso et al., 2020, represents a metric based on seeding density and spatial distribution of tracers for identifying the best frame window (FW) during video footage. In this work, a methodology based on the SDI index was applied to different study cases with the Large Scale Particle Image Velocimetry (LSPIV) technique. Videos adopted are taken from the repository recently created by the COST Action Harmonious, which includes 13 case study across Europe and beyond for image velocimetry applications (Perks et al., 2020). The optimal frame window selection is based on two criteria: i) the maximization of the number of frames and ii) the minimization of SDI index. This methodology allowed an error reduction between 20 and 39% respect to the entire video configuration. This novel idea appears suitable for performing image velocimetry in natural settings where environmental and hydraulic conditions are extremely challenging and particularly useful for real-time observations from fixed river-gauged stations where an extended number of frames are usually recorded and analyzed.</p><p> </p><p><strong>References </strong></p><p>Dal Sasso S.F., Pizarro A., Manfreda S., Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sensing, 12, 1789 (doi: 10.3390/rs12111789), 2020.</p><p>Perks M. T., Dal Sasso S. F., Hauet A., Jamieson E., Le Coz J., Pearce S., …Manfreda S, Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth System Science Data, https://doi.org/10.5194/essd-12-1545-2020, 12(3), 1545 – 1559, 2020.</p><p>Pizarro A., Dal Sasso S.F., Manfreda S., Refining image-velocimetry performances for streamflow monitoring: Seeding metrics to errors minimisation, Hydrological Processes, (doi: 10.1002/hyp.13919), 1-9, 2020.</p><p>Pizarro A., Dal Sasso S.F., Perks M. and Manfreda S., Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow, Hydrology and Earth System Sciences, 24, 5173–5185, (10.5194/hess-24-5173-2020), 2020.</p>


2017 ◽  
Vol 827 ◽  
pp. 250-284 ◽  
Author(s):  
Douglas W. Carter ◽  
Filippo Coletti

We experimentally investigate scale-to-scale anisotropy from the integral to the dissipative scales in homogeneous turbulence. We employ an apparatus in which two facing arrays of randomly actuated air jets generate turbulence with negligible mean flow and shear, over a volume several times larger than the energy-containing eddy size. The Reynolds number based on the Taylor microscale is varied in the range$Re_{\unicode[STIX]{x1D706}}\approx 300{-}500$, while the axial-to-radial ratio of the root mean square velocity fluctuations ranges between 1.38 and 1.72. Two velocity components are measured by particle image velocimetry at varying resolutions, capturing from the integral to the Kolmogorov scales and yielding statistics up to sixth order. Over the inertial range, the scaling exponents of the velocity structure functions are found to differ not only between the longitudinal and transverse components, but also between the axial and radial directions of separation. At the dissipative scales, the moments of the velocity gradients indicate that departure from isotropy is, at the present Reynolds numbers, significant and more pronounced for stronger large-scale anisotropy. The generalized flatness factors of the longitudinal velocity differences tend towards isotropy as the separation is reduced from the inertial to the near-dissipative scales (down to about$10\unicode[STIX]{x1D702}$,$\unicode[STIX]{x1D702}$being the Kolmogorov length), but become more anisotropic for even smaller scales which are characterized by high intermittency. At the large scales, the direction of turbulence forcing is associated with a larger integral length, defined as the distance over which the velocity component in a given direction is spatially correlated. Because of anisotropy, the definition of the integral length is not trivial and may lead to dissimilar conclusions on the qualitative behaviour of the large scales and on the quantitative values of the normalized dissipation. Alternative definitions of these quantities are proposed to account for the anisotropy. Overall, these results highlight the importance of evaluating both the different velocity components and the different spatial directions across all scales of the flow.


Author(s):  
Paulo Yu ◽  
Vibhav Durgesh

An aneurysm is an abnormal growth in the wall of a weakened blood vessel, and can often be fatal upon rupture. Studies have shown that aneurysm shape and hemodynamics, in conjunction with other parameters, play an important role in growth and rupture. The objective of this study was to investigate the impact of varying inflow conditions on flow structures in an aneurysm. An idealized rigid sidewall aneurysm model was prepared and the Womersley number (α) and Reynolds number (Re) values were varied from 2 to 5 and 50 to 250, respectively. A ViVitro Labs pump system was used for inflow control and Particle Image Velocimetry was used for conducting velocity measurements. The results showed that the primary vortex path varied with an increase in α, while an increase in Re was correlated to the vortex strength and formation of secondary vortical structures. The evolution and decay of vortical structures were also observed to be dependent on α and Re.


Sign in / Sign up

Export Citation Format

Share Document