Tensile Properties of Triaxially Woven Fabrics Under Biaxial Loading

1980 ◽  
Vol 102 (4) ◽  
pp. 327-332 ◽  
Author(s):  
P. Schwartz ◽  
R. E. Fornes ◽  
M. H. Mohamed

Classical results in the behavior of woven fabrics are extended to the case of fabrics having three planar, nonorthogonal axes of symmetry (triaxial). The biaxial loading analysis due to Grosberg is extended to the loading of triaxial fabrics in the machine and cross-machine directions in an attempt to predict fabric modulus during the crimp removal stage. Preliminary experimental results showing reasonably good agreement with moderately open fabrics are given. In addition, relationships are developed to allow the construction of conventional fabrics which are equivalent to triaxial fabrics in terms of cover factor and intersections or interfacings per unit area.

1970 ◽  
Vol 09 (01) ◽  
pp. 84-94
Author(s):  
G. Muehllehner

SummaryThe diverging collimator makes it possible to increase the field of view of a radioisotope imaging camera. The larger field of view is obtained by sacrificing efficiency per unit area of the field of view while preserving the resolution of the system. This situation is analogous to that of the scanner, where the efficiency per unit area is inversely proportional to the total area scanned.Efficiency and resolution of diverging collimators can be calculated quite accurately as is evidenced by the good agreement between calculated and measured values. The problem of septum penetration, however, needs to be further investigated for both parallel-hole as well as diverging collimators, so that the influence of the shape and arrangement of the holes upon septum penetration is taken into account.


2017 ◽  
Vol 13 (2) ◽  
pp. 4678-4688
Author(s):  
K. A. Kharroube

We applied two different approaches to investigate the deformation structures of the two nuclei S32 and Ar36 . In the first approach, we considered these nuclei as being deformed and have axes of symmetry. Accordingly, we calculated their moments of inertia by using the concept of the single-particle Schrödinger fluid as functions of the deformation parameter β. In this case we calculated also the electric quadrupole moments of the two nuclei by applying Nilsson model as functions of β. In the second approach, we used a strongly deformed nonaxial single-particle potential, depending on Î² and the nonaxiality parameter γ , to obtain the single-particle energies and wave functions. Accordingly, we calculated the quadrupole moments of S32 and Ar36 by filling the single-particle states corresponding to the ground- and the first excited states of these nuclei. The moments of inertia of S32 and Ar36 are then calculated by applying the nuclear superfluidity model. The obtained results are in good agreement with the corresponding experimental data.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1188
Author(s):  
Klara Kostajnšek ◽  
Krste Dimitrovski

The paper presents an extension of existed cover factor theory more suitable for the evaluation of light penetration through a net woven fabrics structure. It also introduces a new simplified model of predicting the ultraviolet (UV) protective properties of woven fabrics assuming that the coefficient of reflection (KR), transmission (KT), and absorption (KA) of constitutive yarns are known. Since usually they are not, the procedure of preparation of simulation of proper woven fabric samples without interlacing and with known constructional parameters is also presented. The procedure finishes with a fast and cheap detection of missed coefficient for any type of yarns. There are differences between theoretical and measured results, which are not particularly significant in regard to the purpose and demands of investigation.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


2007 ◽  
Vol 353-358 ◽  
pp. 1229-1232
Author(s):  
Z.N. Yin ◽  
L.F. Fan ◽  
Tie Jun Wang

Dynamic Mechanical Analysis (DMA) and static relaxation tests are carried out to study the viscoelastic deformation of PC/ABS alloy with blending ratio of PC to ABS being 50/50. A modified approach is developed to calculate the relaxation modulus of PC/ABS alloy from the DMA experimental results of storage and loss moduli. Comparison of the results obtained from DMA and static relaxation tests is presented and good agreement is found.


1990 ◽  
Vol 195 ◽  
Author(s):  
S. Berthier ◽  
K. Driss-Khodja

ABSTRACTIn order to take into account the actual morphology of the inhomogeneous media, we have developed, effective medium models based on a 2D and 3D position space renormalization /1,2/. These models predict the dipolar resonance and the percolation transition with critical exponents in good agreement with theoretical values and fairly reproduce most of the experimental results, whatever the concentration is. Further more, this allows a valuable comparison of the predictions of our models when applied on different lattices like real digitized TEM of cermet films or randomly occupied lattices.


Sign in / Sign up

Export Citation Format

Share Document