Modeling and Experimental Analysis of Acoustic Emission from Metal Cutting

1989 ◽  
Vol 111 (3) ◽  
pp. 229-237 ◽  
Author(s):  
R. Teti ◽  
D. Dornfeld

Testing parameters characterizing acoustic emission (AE) detected during metal cutting may be theoretically correlated, in a simple manner, to work material properites, cutting conditions, and tool geometry. Experimental results, obtained during turning by different researchers using different AE techniques, are presented and critically assessed with reference to their reciprocal agreement as well as their agreement with theoretical predictions. A review of current methods for AE analysis is also presented and the correlations between different AE parameters and energy and power of the detected signals are reported.

1990 ◽  
Vol 112 (2) ◽  
pp. 184-189 ◽  
Author(s):  
D. V. Hutton ◽  
Qinghuan Yu

Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. Results for machining SAE 1018 and 4140 steels show that the built-up edge can mask the generally accepted AE-cutting speed relation when cutting tools having small rake angles are used. Under cutting conditions conducive to development of a built-up edge, it is shown that increased acoustic emission is generated as a result of increased effective rake angle and corresponding increase of shear angle in the primary deformation zone. Three distinct types of built-up edge have been observed and classified as immature, periodic, or developed, according to effect on acoustic emission.


1979 ◽  
Vol 101 (3) ◽  
pp. 241-249 ◽  
Author(s):  
S. Kaldor ◽  
A. Ber ◽  
E. Lenz

During metal cutting while products are being manufactured, the access material is removed in the form of chips. These chips are obtained in various shapes which depend on cutting conditions, type of workpiece material machined, grade of the tool, geometry of cutting, etc. While brittle materials are being machined, the chips are segmental and disintegrating during the chip formation process. Consequently, these chips cause no difficulties. The problem exists when ductile materials are machined and one may observe the following chip forms: I—Long chips—(two dimensional and oblique type); II—Helical chips—(two dimensional and oblique type). These chips were classified by their influence on production operation. Based upon the natural crater developed during the cutting operation a chip breaker groove was introduced. These grooves are pressed into the insert during its manufacturing. It appears that the configuration of the groove has a crucial influence on the range of cutting conditions in which adequate breaking will occur. The presented paper deals with the different machinisms of chip breaking while machining with groove type chip breakers. Tests were carried out to establish the influence of the various parameters, taking part in the cutting operation, on the chip breaking process.


Author(s):  
X Li ◽  
J Wu

Using acoustic emission (AE) signals to monitor tool wear states is one of the most effective methods used in metal cutting processes. As AE signals contain information on cutting processes, the problem of how to extract the features related to tool wear states from these signals needs to be solved. In this paper, a wavelet packet transform (WPT) method is used to decompose continuous AE signals during cutting; then the features related to tool wear states are extracted from decomposed AE signals. Experimental results verified the feasibility of using the WPT method to extract features related to tool wear states in boring.


1969 ◽  
Vol 184 (1) ◽  
pp. 927-942 ◽  
Author(s):  
R. G. Fenton ◽  
P. L. B. Oxley

A recently developed theory of orthogonal machining is used to calculate chip geometry (including tool-chip contact length) and cutting forces for SAE 1112 steel over a wide range of cutting conditions. A comparison with experimental results shows excellent agreement for most of the cutting conditions considered.


2012 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
LB Abhang ◽  
M Hameedullah

 Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius) and metal cutting conditions (cutting speed, feed rate and depth of cut) on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions. 


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2792-2796
Author(s):  
YOUNG MOON LEE ◽  
WON SIK CHOI ◽  
JAE HWAN SON ◽  
SUN IL KIM ◽  
HEE CHUL JUNG

In metal cutting practices, for a given tool material, tool geometry is a very important element and must be carefully designed in relation to the workpiece material to be machined. Patterns of tool stress are varying with input cutting conditions; however, effects of tool geometry on tool stress are not clearly understood. The load distribution on tool face is affected by the tool geometry and this causes the change of the stress distribution on the tool.


2019 ◽  
Vol 23 (1) ◽  
pp. 297-302 ◽  
Author(s):  
S. Sai Venkatesh ◽  
T. A. Ram Kumar ◽  
A. P. Blalakumhren ◽  
M. Saimurugan ◽  
K. Prakash Marimuthu

Abstract Machining is the most widely used process in manufacturing, and tool wear plays a significant role in machining efficiency and effectiveness. There is a continuous requirement to manufacture high-quality products at a lower cost. Many past researches show that variations in tool geometry affect the cutting forces significantly. The increase in cutting forces leads to excessive vibrations in the system, giving a poor surface finish to the machined product. In this work, a 2D coupled thermo-mechanical model is developed using Abaqus/Explicit to predict the cutting forces during turning of mild steel. Johnson–Cook material model along with damage model has been used to define the material behavior. Coulomb’s friction model is considered for defining the interaction between the tool and the work piece. Metal cutting process is simulated for different sets of cutting conditions and compared with experimental results. The finite element method results correlate well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document