A Theoretical Derivation of the Similarity of Dynamic Compaction Processes of Powder Media in Dies

1986 ◽  
Vol 108 (2) ◽  
pp. 147-152
Author(s):  
Yukio Sano

Multiple shock compactions of powder media within a die with a rigid punch are theoretically investigated. First, similarity of dynamic compaction processes for a powder medium of a simple type is exhibited through nondimensionalized one-dimensional equations. The similarity is established after determination of three parameters, i.e., the ratio S* of the lateral surface to the cross-sectional area of the medium, the ratio M* of the mass of the punch to that of the powder medium filled in the die, and the compaction energy per unit powder volume e. The similarity indicates that the particle velocity, specific volume and pressure have the same variation with respect to nondimensional time at all points in the medium with various cross-sections and initial lengths so long as S* is kept fixed at a certain value, i.e., at the same proportional nondimensional point in the medium. The density distributions of the green compacts are necessarily identical, and so is the mean density in all compactions. Second, it is shown in one of the nondimensionalized equations that wall frictional influence in a compaction where S* → 0 is not present, while the wall frictional influence is extremely large when S* is very large, which implies that the mean densities of the compacts are larger in compactions with smaller S*. Two types of compactions can be obtained for any powder medium because the equation used is applicable to any medium.

1987 ◽  
Vol 109 (4) ◽  
pp. 306-313
Author(s):  
Kiyohiro Miyagi ◽  
Yukio Sano ◽  
Takuo Hayashi

The similarity of dynamic compaction processes was investigated theoretically and predicted in our previous report, where powder media in a die were assumed to be of a simple type, and the punch and plug to be rigid bodies. The predictions were based on a set of one-dimensional equations and a set of nondimensionalized one-dimensional equations. The objective of this study is to examine the similarity experimentally and to present the results of compaction experiments in order to verify the existence predicted. The experiments were carried out on a copper powder medium in dies having inner cross-section in elementary shapes such as circle, square and triangle. The pressure of the medium at a point contacting the end of the plug, the density distribution and mean density of the green compacts were measured in the experiment. From the analysis of the experimental data the validity of the dynamic similarity theory was demonstrated and the similarity was verified to exist despite the differences in size and shape between the dies used, which implies that the copper powder medium in the dies of elementary shapes is of a simple type. Relations between the density and the shape coefficients showed that the density reached maximum as the coefficients decreased approaching a certain point with a decreasing influence of the die wall friction, while past that point, contrary to the prediction by the theory, it began to decrease due to an increasing influence of the elastic deformation of the punch and plug.


1987 ◽  
Vol 109 (4) ◽  
pp. 266-271
Author(s):  
K. Miyagi ◽  
Y. Sano

The dynamic compaction processes of copper powder which was filled in two layers into a die and subjected to solid punch impaction were investigated experimentally in order to assess the effect of different initial density distributions of the powder on the compaction process. The compaction experiments were performed for two situations of layer arrangement: in the first situation the upper layer had a lower uniform initial density distribution than the lower layer and in the second this order was reversed. The processes were photographed for the two situations of layer arrangement using a high speed camera in order to analyze the movement of powder medium and punch, the propagation of shock and elastic waves in the powder medium and density distributions. The pressure on the plug supporting the medium in the die was also measured so that the analysis of the photograph would be facilitated. The two compaction processes observed and analyzed differed considerably, but the green density distributions had only a slight difference. The compaction process obtained for the first situation of layer arrangement agreed well with the theoretical prediction reported previously by the authors. The compaction process for the second situation also agreed with the theoretical result, indicating that the amounts of internal energy dissipation during the two processes differ only slight.


1986 ◽  
Vol 108 (1) ◽  
pp. 9-15 ◽  
Author(s):  
T. Hisakado

Assuming that harder asperities sliding on a flat surface were semicylindrical with the hemispherical ends, whose surface consisted of a series of spherical micro-asperities, effects of the number of contact points n, total area Sp of the cross-sections of grooves ploughed by harder asperities and depth of plastic zone on the coefficient of friction and wear for ceramics were theoretically analyzed. To verify theory, wear tests with various ceramic pins and a Si3N4 disk were carried out at a sliding speed of 1.63 m/s and under load of 0.98 N with no lubrication. The sizes of wear scratches on the worn surfaces were measured by means of a Talysurf and SEM photographs. The wear rates of the pins and Si3N4 disks increased with an increase in the mean cross-sectional area Sp/n of the scratches. This trend agreed with the theoretical results, which also showed that the Sp values were proportional to the wear rates. Theory also indicated the existence of a new criterion applicable to estimation of the wear rate.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1843
Author(s):  
Yuhao Zhao ◽  
Mi Zhou ◽  
Haijun Li ◽  
Jianing He ◽  
Pianpian Wei ◽  
...  

Diaphyseal cross-sectional geometry (CSG) is an effective indicator of humeral bilateral asymmetry. However, previous studies primarily focused on CSG properties from limited locations to represent the overall bilateral biomechanical performance of humeral diaphysis. In this study, the complete humeral diaphyses of 40 pairs of humeri from three Chinese archaeological populations were scanned using high-resolution micro-CT, and their biomechanical asymmetries were quantified by morphometric mapping. Patterns of humeral asymmetry were compared between sub-groups defined by sex and population, and the representativeness of torsional rigidity asymmetry at the 35% and 50% cross-sections (J35 and J50 asymmetry) was testified. Inter-group differences were observed on the mean morphometric maps, but were not statistically significant. Analogous distribution patterns of highly asymmetrical regions, which correspond to major muscle attachments, were observed across nearly all the sexes and populations. The diaphyseal regions with high variability of bilateral asymmetry tended to present a low asymmetrical level. The J35 and J50 asymmetry were related to the overall humeral asymmetry, but the correlation was moderate and they could not reflect localized asymmetrical features across the diaphysis. This study suggests that the overall asymmetry pattern of humeral diaphysis is more complicated than previously revealed by individual sections.


Author(s):  
M. M. R. Williams

AbstractWe develop a theory of particle scattering in anisotropic media. That is, a medium in which the microstructure causes the mean free paths of the particles to become dependent on their direction of motion with respect to some fixed axis. The equation which results is similar to the normal, one-speed Boltzmann transport equation but has cross-sections which are functions of direction. This equation is solved for arbitrary cross-sectional dependence on direction in plane geometry.


1992 ◽  
Vol 114 (2) ◽  
pp. 117-138
Author(s):  
Yukio Sano

Recently, we have elucidated some mechanical behaviors of powders during the compaction. The elucidation involves the constitutive relations of a powder medium under the multishock compaction, the qualitative behavior such as the similarities of the compaction processes, the die wall friction effect, and the uniformity of the final density distribution of the compact with a high density, and the quantitative behavior analyzed by the pseudo-viscosity method and the shock fitting. This review describes this behavior systematically.


Author(s):  
Yong Chul Kim ◽  
Yukio Tamura

<p>Wind turbines are commonly used power generation systems around the world and their application is becoming increasingly widespread. Traditionally, circular‐cross‐section wind towers have been used, but recent upsizing of wind turbines has exposed weaknesses of these structures, including problems related to manufacturing and inadequate strength. Thus, the concept of site‐ assembled modular towers with polygonal cross‐sections such as octagonal and/or tetradecagonal has been proposed, but their wind‐resistant performances have not been clearly investigated. In the present study, the wind‐resistant performances of polygonal cross‐sectional towers were investigated through wind tunnel tests. It was thus found that the maximum force coefficient of the upper structure is larger than that of the tower, which makes the effect of cross‐sectional tower shape rather small. The mean and fluctuating lift force coefficients of a helical square cross‐sectional tower were quite small for cases of tower only and wind turbine.</p>


1979 ◽  
Vol 101 (2) ◽  
pp. 122-128
Author(s):  
Yukio Sano ◽  
Kiyohiro Miyagi

In the paper presented a dynamic compaction of a two-layered powder medium is analyzed. A two-layered medium is used because it is the simplest form of layered medium available. The layers are differentiated not in terms of different powdered materials but rather a difference in terms of initial-density (initial specific volume) distribution, that is a higher initial density distribution and a lower initial density distribution. Again for these initial density distributions, two forms of arrangement can be considered; for the first situation, the layer to be impacted has a lower initial density distribution, while for the second situation the arrangement is reversed. The objective of this paper, therefore, is to examine the effect that the initial density sequence has on the compaction process and on the green density of a layered powder medium, especially in terms of shock wave and elastic wave influence.


Author(s):  
Roshanak Ali-Akbar Navahi ◽  
Samira Chaibakhsh ◽  
Sayyed Amirpooya Alemzadeh ◽  
Kaveh Abri Aghdam

Purpose: To determine the appropriate number of histopathological cross-sections that are required for a conclusive diagnosis of giant cell arteritis (GCA). Methods: In this cross-sectional study, the number of sections per slide for paraffin-embedded blocks for 100 randomly selected cases where GCA was suspected and those for negative temporal artery biopsies (TABs) were compared with the number of cross-sections per specimen for eight positive-TABs. All aforementioned examinations were conducted at our center from 2012 to 2016. Then, negative-TABs were retrieved and re-evaluated using light microscopy considering the histopathological findings of GCA. Results: Ninety-five paraffin blocks were retrieved. The original mean biopsy length was 15.39 ± 7.56 mm. Comparison of the mean number of cross-sections per specimen for both the positiveand negative-TABs (9.25 ± 3.37 and 9.53 ± 2.46) showed that 9.87 ± 2.77 [95% confidence intervals (CI)] cross-sections per specimen were sufficient for a precise GCA diagnosis. There was no statistically significant difference in the mean biopsy length (P = 0.142) among the eight positive-TABs. Similarly, no significant difference was observed in the number of cross-sections per specimen (P = 0.990) for positive-TABs compared to those for the negative-TABs. After the retrieval of negative-TABs, the mean number of total pre- and post-retrieval cross-sections per specimen was 17.66 ± 4.43. Among all retrieved specimens, only one case (0.01%) showed the histopathological features of healed arteritis. Conclusion: Positive-TABs did not reveal more histological cross-sections than the negative ones and increasing the number of cross-sections did not enhance the accuracy of TAB.


1969 ◽  
Vol 8 (53) ◽  
pp. 241-252 ◽  
Author(s):  
Anthony J. Gow

The size of firn crystals as a function of age has been investigated in thin sections to a depth of 49 m at the South Pole. Grain cross-sections increased in size from 0.24 mm2 at 0.1 m depth to 0.63 mm2 at 10 m. Crystals, as distinct from grains, increased in size from 0.18 to 0.43 mm2 over the same interval, implying that grains are generally composed of just one or two crystals rather than several as is frequently contended. The mean crystal cross-section increased linearly with the age of the firn at a rate of 0.0006 mm2 year−1; in 388 year old firn at 49 m the crystal size measured 0.63 mm2. Analysis of crystal-growth data from other locations in Antarctica and Greenland also revealed a strong linear relationship between the mean cross-sectional arcas (D2) of crystals (in mm2) and their ages in years (t), i.e. . The fact that the temperature dependence of the crystal growth rate K can be expressed very satisfactorily in an equation of the form K = K0 exp (E/RT) confirms predictions that crystal growth in firn is essentially analogous to grain growth in metallic and ceramic sinters. An extrapolation of available data indicates that crystal growth rates in dry firn could be expected to vary by two orders of magnitude (0.0003 to 0.03 mm2 year−1) over the temperature range −60° to −15°C. A method of utilizing crystal growth-mean annual temperature data to determine accumulation rates in snow is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document