scholarly journals Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry

1985 ◽  
Vol 107 (2) ◽  
pp. 427-435 ◽  
Author(s):  
A. J. Strazisar

Several flow phenomena, including flow field periodicity, rotor shock oscillation, and rotor shock system geometry have been investigated in a transonic low aspect ratio fan rotor using laser anemometry. Flow periodicity is found to increase with increasing rotor pressure rise and to correlate with blade geometry variations. Analysis of time-accurate laser anemometer data indicates that the rotor shock oscillates about its mean location with an amplitude of 3–4 percent of rotor chord. The shock surface is nearly two-dimensional for levels of rotor pressure rise at and above the peak efficiency level but becomes more complex for lower levels of pressure rise. Spanwise shock lean generates radial flows due to streamline deflection in the hub-to-shroud streamsurface.

1981 ◽  
Vol 103 (2) ◽  
pp. 430-437 ◽  
Author(s):  
A. J. Strazisar ◽  
J. A. Powell

A laser anemometer system employing an efficient data acquisition technique has been used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.


Author(s):  
Ja´nos Vad ◽  
Ali R. A. Kwedikha ◽  
Helmut Jaberg

Experimental and computational studies were carried out in order to survey the energetic aspects of forward and backward sweep in axial flow rotors of low aspect ratio blading for incompressible flow. It has been pointed out that negative sweep tends to increase the lift, the flow rate and the ideal total pressure rise in the vicinity of the endwalls. Just the opposite tendency was experienced for positive sweep. The local losses were found to develop according to combined effects of sweep near the endwalls, endwall and tip clearance losses, and profile drag influenced by re-arrangement of the axial velocity profile. The forward-swept bladed rotor showed reduced total efficiency compared to the unswept and swept-back bladed rotors. This behavior has been explained on the basis of analysis of flow details. It has been found that the swept bladings of low aspect ratio tend to retain the performance of the unswept datum rotor even in absence of sweep correction.


Author(s):  
N. Gourdain ◽  
S. Burguburu ◽  
G. J. Michon ◽  
N. Ouayahya ◽  
F. Leboeuf ◽  
...  

This paper deals with the first instability which occurs in compressors, close to the maximum of pressure rise, called rotating stall. A numerical simulation of these flow phenomena is performed and a comparison with experimental data is made. The configuration used for the simulation is an axial single-stage and low speed compressor (compressor CME2, LEMFI). The whole stage is modeled with a full 3D approach and tip clearance is taken into account. The numerical simulation shows that at least two different mechanisms are involved in the stall inception. The first one leads to a rotating stall with 10 cells and the second one leads to a configuration with only 3 cells. Unsteady signals from the computation are analyzed thanks to a time-frequency spectral analysis. An original model is proposed, in order to predict the spatial and the temporal modes which are the results of the interaction between stall cells and the compressor stage. A comparison with measurements shows that the computed stall inception point corresponds to the experimental limit of stability. The performance of the compressor during rotating stall is also well predicted by the simulation.


1999 ◽  
Vol 103 (1025) ◽  
pp. 317-324 ◽  
Author(s):  
L. He ◽  
J. O. Ismael

Abstract A three-dimensional unsteady Navier-Stokes solver has been used to simulate stall inception in a single row ten passage segment of a transonic fan, the NASA rotor-67. At subsonic flow conditions, the 3D results illustrate a rotating stall inception with short scale part-span cells rotating at around 80% rotor speed, similar to that observed in some low speed experiments. However, at a supersonic relative inflow condition, the results show that an isolated blade row tends to stall in a one-dimensional breakdown pattern without first experiencing rotating stall. At near-stall conditions, significant self-excited unsteadiness is generated by the interaction between the tip-leakage vortex and the passage shock wave. Further computations for two-dimensional configurations indicate that it is possible to have a rotating pattern of instability in transonic blade rows associated with circumferential synchronised shock oscillation.


Author(s):  
C. Hah ◽  
S. L. Puterbaugh ◽  
A. R. Wadia

The present paper reports a numerical study on the effects of aerodynamic sweep applied to a low-aspect-ratio, high-through-flow, state-of-the-art, axial transonic compressor design. Numerical analyses based on the Reynolds-averaged Navier-Stokes equations were used to obtain the performance of a conventional unswept rotor, a forward swept rotor, and an aft-swept rotor, at both design and off-design operating conditions. The numerical analyses predicted that the forward-swept rotor has a higher peak efficiency and a substantially larger stall margin than the baseline unswept rotor, and that the aft-swept rotor has a similar peak efficiency as the unswept rotor with a significantly smaller stall margin. The rig test confirmed the numerical assessment of the effects of aerodynamic sweep on the low-aspect-ratio, high-through-flow, transonic compressor rotor. Detailed analyses of the measured and calculated flow fields indicate that two mechanisms are primarily responsible for the differences in aerodynamic performance among these rotors. The first mechanism is a change in the radial shape of the passage shock near the casing by the endwall effect, and the second is the radial migration of low-momentum fluid to the blade tip region. Aerodynamic sweep can be used to control the shock structure near the endwall and the migration of secondary flows and, consequently, flow structures near the tip area for improved performance.


Author(s):  
Jens Ortmanns

In order to increase the efficiency of a compressor module, several loss sources such as aerofoil profile loss, secondary loss and clearance flow phenomena must be taken into account and balanced in the most efficient way. This current document presents the results of a numerical investigation based on a conventionally loaded high pressure compressor stage with different inlet and exit swirls. The effects of changing the degree of reaction on the compressor stage flow pattern is analysed in detail. In general, the correlation between the overall stage efficiency at constant pressure ratio and the degree of stage reaction is low. Nevertheless, the results show a direct impact on the rotor tip leakage flow and the secondary flow phenomena in the stator end-wall region when the degree of reaction is modified which is driven by the change in static pressure rise between the rotor and the stator passages. The balance of these two loss sources might have an impact on the efficiency and the stall behaviour of a multi-stage compressor.


Author(s):  
Yaozhi Lu ◽  
Bharat Lad ◽  
Jeff Green ◽  
Sina Stapelfeldt ◽  
Mehdi Vahdati

Due to manufacturing tolerance and deterioration during operation, fan blades in the same engine exhibit geometric variability. The absence of symmetry will inevitably exacerbate and contribute to the complexities of running geometry prediction as the blade variability is bound to be amplified by aerodynamic and centrifugal loading. In this study, we aim to address the fan blade untwist related phenomenon known as alternate passage divergence (APD). As the name suggests, APD manifests as alternating passage geometry (and hence alternating tip stagger pattern) when the fan stage is operating close to/at peak efficiency condition. APD can introduce adverse influence on fan performance, aeroacoustics behaviour, and high cycle fatigue characteristics of the blade. The main objective of the study is to identify the parameters contributing to the APD phenomenon. In this study, the APD behaviours of two transonic fan blade designs are compared.


Author(s):  
C. Bréard ◽  
M. Vahdati ◽  
A. I. Sayma ◽  
M. Imregun

The forced response of a low aspect-ratio transonic fan due to different inlet distortions was predicted using an integrated time-domain aeroelasticity model. A time-accurate, non-linear viscous, unsteady flow representation was coupled to a linear modal model obtained from a standard finite element formulation. The predictions were checked against the results obtained from a previous experimental programme known as “Augmented Damping of Low-aspect-ratio Fans” (ADLARF). Unsteady blade surface pressures, due to inlet distortions created by screens mounted in the intake inlet duct, were measured along a streamline at 85% blade span. Three resonant conditions, namely 1F/3EO, 1T&2F /8EO and 2S/8EO, were considered. Both the amplitude and the phase of the unsteady pressure fluctuations were predicted with and without the blade flexibility. The actual blade displacements and the amount of aerodynamic damping were also computed for the former case. A whole-assembly mesh with about 2,000,000 points was used in some of the computations. Although there were some uncertainties about the aerodynamic boundary conditions, the overall agreement between the experimental and predicted results was found to be reasonably good. The inclusion of the blade motion was shown to have an effect on the unsteady pressure distribution, especially for the 2F/1T case. It was concluded that a full representation of the blade forced response phenomenon should include this feature.


Author(s):  
L. Wallscheid ◽  
F. Eulitz ◽  
R. Heinecke

Experimental and numerical investigations on a counterrotating propfan (CRISP) have been carried out to study unsteady flow phenomena generated by the interaction of the two rotors. This paper focuses mainly on the downstream effects of rotor 1 on rotor 2. Therefore unsteady Laser-2-Focus, unsteady total pressure measurements and an unsteady simulation have been carried out. The total pressure measurements behind the rotors show variations of the absolute total pressure outside the wake regions up to 30 percent of the average total pressure rise. Some of these are caused by the interaction of the rotor 1-generated wakes with the leading edge of rotor 2. The others may result from the pressure waves generated by the reflection of the rotor 2-shockwaves by the blades of rotor 1.


Author(s):  
Paul R. Emmerson

A 3D viscous solver has been used to model the flow in the stator of a highly loaded single-stage transonic fan. The fan has a very high level of aerodynamic loading at the hub, which results in a severe hub endwall stall. Prediction of the flow at the 100% speed, peak efficiency condition has been carried out and comparisons are made with experiment, including stator exit traverses and fixed blade surface pressure tappings and flow visualisation. Comparisons are also made with an analysis of the rotor and stator rows using the DRA S1-S2 method. The 3D predictions show good qualitative agreement with measurements in all regions of the flow field. Quantitatively the flow away from the hub region agreed the best. The general trends of the severe hub endwall stail were predicted, although the shape and size did not match experiment exactly. The S1-S2 system was unable to predict the hub endwall stall, since it arises from fully 3D flow effects.


Sign in / Sign up

Export Citation Format

Share Document