Measurements in Two-Dimensional Plumes in Crossflow

1989 ◽  
Vol 111 (2) ◽  
pp. 130-138 ◽  
Author(s):  
B. R. Ramaprian ◽  
H. Haniu

The mean-flow and turbulent properties of two-dimensional buoyant jets discharged vertically upward into a crossflowing ambient have been measured in a hydraulic flume, using laser velocimetry and microresistance thermometry. The trajectory of the resulting inclined plume is found to be nearly straight, beyond a short distance from the source. The flow is essentially characterized by the presence of buoyancy forces along (s-direction) and perpendicular (n-direction) to the trajectory. While the s-component buoyancy tends to destabilize the flow and hence raise the overall level of turbulence in the flow, the n-component buoyancy tends to augment turbulence on the upper part of the flow and inhibit turbulence on the lower part. The experimental data are used to examine these effects quantitatively.

1982 ◽  
Vol 123 ◽  
pp. 523-535 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The mean-velocity profiles and entrainment rates in the similarity region of a two-dimensional jet are generated by a simple superposition of Rankine vortices arranged to represent a vortex street. The spacings between the vortex centres, their two-dimensional offsets from the centreline, as well as the core radii and circulation strengths, are all governed by similarity relationships and based upon experimental data.Major details of the mean flow field such as the axial and lateral mean-velocity components and the magnitude of the Reynolds stress are properly determined by the model. The sign of the Reynolds stress is, however, not properly predicted.


Author(s):  
Mahmoud Charmiyan ◽  
Ahmed-Reza Azimian ◽  
Ebrahim Shirani ◽  
Fethi Aloui

In this paper, impingement of a turbulent rectangular flow to a fixed wall is investigated. The jet flows from bottom-to-top and the output jet Reynolds is 16000. The nozzle-to-plate distance is equal to 10 (H/e = 10). Five turbulence models, including k-ε, RNG k-ε, k-ω SST, RSM and v2f model have been used for two-dimensional numerical simulation of the turbulent flow. Because of the complexities of the impingement flow, such as curved streamlines, flow separation, normal strains and sudden deceleration in different areas, different turbulence models are proposed to simulate different regions of the flow. To investigate the capability of these turbulence models in simulating different regions of the impinging jet, the mean flow velocity field and turbulent kinetic energy are extracted and compared with the experimental data of a two-dimensional particle image velocimetry (PIV). The calculated error of these five turbulence models was presented for the various flow regions, while it have not been clearly investigated earlier. Results indicate the highest conformity of the v2f model with the experimental data at the jet centerline. However, this model does not predict well the flow at the shear layer and wall-jet areas. RSM Gibson and Lander model has the highest conformity with the experimental data in these regions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Aristeidis A. Bloutsos ◽  
Panayotis C. Yannopoulos

The development of a local system of orthogonal curvilinear coordinates, which is appropriate to monitor the flow of an inclined buoyant jet with reference to the basic Cartesian coordinate system is presented. Such a system is necessary for the correct application of the integral method, since the well-known Gaussian profiles should be integrated on the cross-sectional area of inclined buoyant jet, where they are valid. This is the major advantage of the present work compared to all other integral methods using Cartesian coordinate systems. Consequently, the flow and mixing governing partial differential equations (PDE), i.e., continuity, momentum, buoyancy, and/or tracer conservation, are written in the local orthogonal curvilinear coordinate system and, then, the Reynolds substitution regarding mean and fluctuating components of all dependent variables is applied. After averaging with respect to time, the mean flow PDEs are taken, omitting second-order terms, as the dynamic pressure and molecular viscosity, compared to the mean flow and mixing contributions of turbulent terms. The latter are introduced through empirical coefficients. The Boussinesq’s approximation regarding small density differences is taken into consideration. The system of PDEs is closed by assuming known spreading coefficients along with Gaussian similarity profiles. The methodology is applied in the inclined two-dimensional buoyant jet; thus, PDEs are integrated on the jet cross-sectional area resulting in ordinary differential equations (ODE), which are appropriate to be solved by applying the 4th order Runge-Kutta algorithm coded in either FORTRAN or EXCEL. The numerical solution of ODEs, concerning trajectory of the inclined two-dimensional buoyant jet, as well as longitudinal variations of the mean axial velocity, mean concentration, minimum dilution, and entrainment velocity or entrainment coefficient, occurs quickly, saving computer memory and effort. The satisfactory agreement of results with experimental data available in the literature empowers the usefulness of the proposed methodology in inclined buoyant jets.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Dario Valentini ◽  
Giovanni Pace ◽  
Luca d'Agostino

A high-head three-bladed inducer has been equipped with pressure taps on the hub along the blade channels with the aim of more closely investigating the dynamics of cavitation-induced instabilities developing in the impeller flow. Spectral analysis of the pressure signals obtained from two sets of transducers mounted both in the stationary and rotating frames has allowed to characterize the nature, intensity, and interactions of the main flow instabilities detected in the experiments: subsynchronous rotating cavitation (RC), cavitation surge (CS), and a high-order axial surge oscillation. A dynamic model of the unsteady flow in the blade channels has been developed based on experimental data and on suitable descriptions of the mean flow and the oscillations of the cavitating volume. The model has been used for estimating at the inducer operating conditions of interest the intensity of the flow oscillations associated with the occurrence of the CS mode generated by RC in the inducer inlet.


1989 ◽  
Vol 209 ◽  
pp. 385-403 ◽  
Author(s):  
H. M. Atassi ◽  
J. Grzedzinski

For small-amplitude vortical and entropic unsteady disturbances of potential flows, Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that is a known function of the imposed upstream disturbance and a potential part ∇ϕ satisfying a linear inhomogeneous wave equation with a dipole-type source term. The present paper deals with flows around bodies with a stagnation point. It is shown that for such flows u(I) becomes singular along the entire body surface and its wake and as a result ∇ϕ will also be singular along the entire body surface. The paper proposes a modified splitting of the velocity field into a vortical part u(R) that has zero streamwise and normal components along the body surface, an entropy-dependent part and a regular part ∇ϕ* that satisfies a linear inhomogeneous wave equation with a modified source term.For periodic disturbances, explicit expressions for u(R) are given for three-dimensional flows past a single obstacle and for two-dimensional mean flows past a linear cascade. For weakly sheared flows, it is shown that if the mean flow has only a finite number of isolated stagnation points, u(R) will be finite along the body surface. On the other hand, if the mean flow has a stagnation line along the body surface such as in two-dimensional flows then the component of u(R) in this direction will have a logarithmic singularity.For incompressible flows, the boundary-value problem for ϕ* is formulated in terms of an integral equation of the Fredholm type. The theory is applied to a typical bluff body. Detailed calculations are carried out to show the velocity and pressure fields in response to incident harmonic disturbances.


1999 ◽  
Vol 390 ◽  
pp. 325-348 ◽  
Author(s):  
S. NAZARENKO ◽  
N. K.-R. KEVLAHAN ◽  
B. DUBRULLE

A WKB method is used to extend RDT (rapid distortion theory) to initially inhomogeneous turbulence and unsteady mean flows. The WKB equations describe turbulence wavepackets which are transported by the mean velocity and have wavenumbers which evolve due to the mean strain. The turbulence also modifies the mean flow and generates large-scale vorticity via the averaged Reynolds stress tensor. The theory is applied to Taylor's four-roller flow in order to explain the experimentally observed reduction in the mean strain. The strain reduction occurs due to the formation of a large-scale vortex quadrupole structure from the turbulent spot confined by the four rollers. Both turbulence inhomogeneity and three-dimensionality are shown to be important for this effect. If the initially isotropic turbulence is either homogeneous in space or two-dimensional, it has no effect on the large-scale strain. Furthermore, the turbulent kinetic energy is conserved in the two-dimensional case, which has important consequences for the theory of two-dimensional turbulence. The analytical and numerical results presented here are in good qualitative agreement with experiment.


1971 ◽  
Vol 93 (3) ◽  
pp. 433-443 ◽  
Author(s):  
G. Heskestad

Measurements have been made of the mean flow in a two-dimensional, constant-width, ninety-degree miter bend and compared with predictions of available free-streamline theories. Agreement is quite favorable, especially with a model incorporating separation ahead of the concave corner. Reynolds number effects observed in real flows are argued to be associated with changes in the location of the outer-wall separation point. Requirements for relevancy of free-streamline models of internal flows separating at a salient edge are suggested and confirmed for cases examined.


1994 ◽  
Vol 266 ◽  
pp. 175-207 ◽  
Author(s):  
Howard S. Littell ◽  
John K. Eaton

Measurements of the boundary layer on an effectively infinite rotating disk in a quiescent environment are described for Reynolds numbers up to Reδ2 = 6000. The mean flow properties were found to resemble a ‘typical’ three-dimensional crossflow, while some aspects of the turbulence measurements were significantly different from two-dimensional boundary layers that are turned. Notably, the ratio of the shear stress vector magnitude to the turbulent kinetic energy was found to be at a maximum near the wall, instead of being locally depressed as in a turned two-dimensional boundary layer. Also, the shear stress and the mean strain rate vectors were found to be more closely aligned than would be expected in a flow with this degree of crossflow. Two-point velocity correlation measurements exhibited strong asymmetries which are impossible in a two-dimensional boundary layer. Using conditional sampling, the velocity field surrounding strong Reynolds stress events was partially mapped. These data were studied in the light of the structural model of Robinson (1991), and a hypothesis describing the effect of cross-stream shear on Reynolds stress events is developed.


1977 ◽  
Vol 99 (4) ◽  
pp. 648-654 ◽  
Author(s):  
L. D. Kannberg ◽  
L. R. Davis

The results of an experimental study of deep submerged multiple-port thermal discharges are compared to the predictions of a theory treating the dilution of merging multiple-port buoyant jets discharge from a row of equally spaced ports. The paper summarizes the considerable alteration of the Hirst [11] model necessary to adequately treat merging multiple jets. The essential features of the analysis are: (1) the gradual transition of the profiles from simple axisymmetric profiles to merging profiles and finally to fully merged, pseudo-slot, two-dimensional profiles, and (2) an entrainment based on the available entrainment surface. Results indicate that the overprediction of plume characteristics associated with certain other models as compared to experimental data may be overcome using such an analysis and that suitable prediction may be obtained.


Author(s):  
C. J. Lea ◽  
A. P. Watkins

A study is made here of the application of a differential stress model (DSM) of turbulence to flows in two model reciprocating engines. For the first time this study includes compressive effects. An assessment between DSM and k-ɛ results is made comparing with laser Doppler anemometry experimental data of the mean flow and turbulence intensity levels during intake and compression strokes. A well-established two-dimensional finite-volume computer code is employed. Two discretization schemes are used, namely the HYBRID scheme and the QUICK scheme. The latter is found to be essential if differentiation is to be made between the turbulence models. During the intake stroke the DSM results are, in general, similar to the k-ɛ results in comparison to the experimental data, except for the turbulence levels, which the DSM seriously underpredicts. This is in contrast to a parallel set of calculations of steady in-flow, which showed significant gains from using the DSM, particularly at the turbulence field level. The increased number of grid lines employed in those calculations contribute to this apparent difference between steady and unsteady flows, but cycle- to-cycle variations are more likely to be the primary cause, resulting in too high levels of turbulence intensity being measured. However, during the compression stroke the DSM returns vastly superior results to the k-ɛ model at both the mean flow and turbulence intensity levels. This is because the DSM generates an anisotropic shear stress field during the early stages of compression that suppresses the main vortical structure, in line with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document