Capability Assessment of Five Different RANS-Based Turbulence Models to Simulate the Various Regions of Slot Turbulent Impingement Jet Flow

Author(s):  
Mahmoud Charmiyan ◽  
Ahmed-Reza Azimian ◽  
Ebrahim Shirani ◽  
Fethi Aloui

In this paper, impingement of a turbulent rectangular flow to a fixed wall is investigated. The jet flows from bottom-to-top and the output jet Reynolds is 16000. The nozzle-to-plate distance is equal to 10 (H/e = 10). Five turbulence models, including k-ε, RNG k-ε, k-ω SST, RSM and v2f model have been used for two-dimensional numerical simulation of the turbulent flow. Because of the complexities of the impingement flow, such as curved streamlines, flow separation, normal strains and sudden deceleration in different areas, different turbulence models are proposed to simulate different regions of the flow. To investigate the capability of these turbulence models in simulating different regions of the impinging jet, the mean flow velocity field and turbulent kinetic energy are extracted and compared with the experimental data of a two-dimensional particle image velocimetry (PIV). The calculated error of these five turbulence models was presented for the various flow regions, while it have not been clearly investigated earlier. Results indicate the highest conformity of the v2f model with the experimental data at the jet centerline. However, this model does not predict well the flow at the shear layer and wall-jet areas. RSM Gibson and Lander model has the highest conformity with the experimental data in these regions.

1982 ◽  
Vol 123 ◽  
pp. 523-535 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The mean-velocity profiles and entrainment rates in the similarity region of a two-dimensional jet are generated by a simple superposition of Rankine vortices arranged to represent a vortex street. The spacings between the vortex centres, their two-dimensional offsets from the centreline, as well as the core radii and circulation strengths, are all governed by similarity relationships and based upon experimental data.Major details of the mean flow field such as the axial and lateral mean-velocity components and the magnitude of the Reynolds stress are properly determined by the model. The sign of the Reynolds stress is, however, not properly predicted.


1989 ◽  
Vol 111 (2) ◽  
pp. 130-138 ◽  
Author(s):  
B. R. Ramaprian ◽  
H. Haniu

The mean-flow and turbulent properties of two-dimensional buoyant jets discharged vertically upward into a crossflowing ambient have been measured in a hydraulic flume, using laser velocimetry and microresistance thermometry. The trajectory of the resulting inclined plume is found to be nearly straight, beyond a short distance from the source. The flow is essentially characterized by the presence of buoyancy forces along (s-direction) and perpendicular (n-direction) to the trajectory. While the s-component buoyancy tends to destabilize the flow and hence raise the overall level of turbulence in the flow, the n-component buoyancy tends to augment turbulence on the upper part of the flow and inhibit turbulence on the lower part. The experimental data are used to examine these effects quantitatively.


Author(s):  
C. J. Lea ◽  
A. P. Watkins

A study is made here of the application of a differential stress model (DSM) of turbulence to flows in two model reciprocating engines. For the first time this study includes compressive effects. An assessment between DSM and k-ɛ results is made comparing with laser Doppler anemometry experimental data of the mean flow and turbulence intensity levels during intake and compression strokes. A well-established two-dimensional finite-volume computer code is employed. Two discretization schemes are used, namely the HYBRID scheme and the QUICK scheme. The latter is found to be essential if differentiation is to be made between the turbulence models. During the intake stroke the DSM results are, in general, similar to the k-ɛ results in comparison to the experimental data, except for the turbulence levels, which the DSM seriously underpredicts. This is in contrast to a parallel set of calculations of steady in-flow, which showed significant gains from using the DSM, particularly at the turbulence field level. The increased number of grid lines employed in those calculations contribute to this apparent difference between steady and unsteady flows, but cycle- to-cycle variations are more likely to be the primary cause, resulting in too high levels of turbulence intensity being measured. However, during the compression stroke the DSM returns vastly superior results to the k-ɛ model at both the mean flow and turbulence intensity levels. This is because the DSM generates an anisotropic shear stress field during the early stages of compression that suppresses the main vortical structure, in line with the experimental data.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Jahed Hossain ◽  
Erik Fernandez ◽  
Christian Garrett ◽  
Jayanta Kapat

The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was ≃15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is three times the impingement jet diameter. The channel width is four times the jet diameter of the impingement hole. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle image velocimetry (PIV) was used to reveal the detailed information of flow phenomena. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and the turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveal that the flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) simulations (shear stress transport k–ω, ν2−f, and Reynolds stress model (RSM)) were performed in the same channel geometry. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature-sensitive paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with the results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.


2016 ◽  
Vol 810 ◽  
pp. 25-59 ◽  
Author(s):  
Carlo Salvatore Greco ◽  
Gennaro Cardone ◽  
Julio Soria

This paper reports on an experimental study of the influence of the Strouhal number (0.011, 0.022 and 0.044) and orifice-to-plate distances (2, 4 and 6 orifice diameters) on the flow field of an impinging zero-net-mass-flux jet at a Reynolds number equal to 35 000. These jets are generated by a reciprocating piston that oscillates in a cavity behind a circular orifice. Instantaneous two-dimensional in-plane velocity fields are measured in a plane containing the orifice axis using multigrid/multipass cross-correlation digital particle image velocimetry. These measurements have been used to investigate the mean flow quantities and turbulent statistics of the impinging zero-net-mass-flux jets. In addition, the vortex ring behaviour is analysed via its trajectory and azimuthal vorticity as well as the saddle point excursion, the flow rate and entrainment. The behaviour of all these quantities depends on the Strouhal number and the orifice-to-plate distance because the former governs the presence and the relative importance of the vortex ring and the trailing jet on the flow field and the latter delimits the downstream evolution of these structures.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Dario Valentini ◽  
Giovanni Pace ◽  
Luca d'Agostino

A high-head three-bladed inducer has been equipped with pressure taps on the hub along the blade channels with the aim of more closely investigating the dynamics of cavitation-induced instabilities developing in the impeller flow. Spectral analysis of the pressure signals obtained from two sets of transducers mounted both in the stationary and rotating frames has allowed to characterize the nature, intensity, and interactions of the main flow instabilities detected in the experiments: subsynchronous rotating cavitation (RC), cavitation surge (CS), and a high-order axial surge oscillation. A dynamic model of the unsteady flow in the blade channels has been developed based on experimental data and on suitable descriptions of the mean flow and the oscillations of the cavitating volume. The model has been used for estimating at the inducer operating conditions of interest the intensity of the flow oscillations associated with the occurrence of the CS mode generated by RC in the inducer inlet.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


1989 ◽  
Vol 209 ◽  
pp. 385-403 ◽  
Author(s):  
H. M. Atassi ◽  
J. Grzedzinski

For small-amplitude vortical and entropic unsteady disturbances of potential flows, Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that is a known function of the imposed upstream disturbance and a potential part ∇ϕ satisfying a linear inhomogeneous wave equation with a dipole-type source term. The present paper deals with flows around bodies with a stagnation point. It is shown that for such flows u(I) becomes singular along the entire body surface and its wake and as a result ∇ϕ will also be singular along the entire body surface. The paper proposes a modified splitting of the velocity field into a vortical part u(R) that has zero streamwise and normal components along the body surface, an entropy-dependent part and a regular part ∇ϕ* that satisfies a linear inhomogeneous wave equation with a modified source term.For periodic disturbances, explicit expressions for u(R) are given for three-dimensional flows past a single obstacle and for two-dimensional mean flows past a linear cascade. For weakly sheared flows, it is shown that if the mean flow has only a finite number of isolated stagnation points, u(R) will be finite along the body surface. On the other hand, if the mean flow has a stagnation line along the body surface such as in two-dimensional flows then the component of u(R) in this direction will have a logarithmic singularity.For incompressible flows, the boundary-value problem for ϕ* is formulated in terms of an integral equation of the Fredholm type. The theory is applied to a typical bluff body. Detailed calculations are carried out to show the velocity and pressure fields in response to incident harmonic disturbances.


Author(s):  
Foad Vashahi ◽  
Jeekeun Lee

An experimental study is conducted to understand the mean and instantaneous behavior of the swirling flow issued from a triple swirler influenced by a single critical geometrical parameter, termed as the passage length. The investigated geometrical parameter defines the interaction point of the inner axial swirlers with the outer radial swirler, which consequently defines the primary air–fuel mixture characteristics and the resultant combustion state. Experiments were performed under cold flow conditions, and planar particle image velocimetry was employed to measure the velocity field. The mean flow pattern exhibited significant differences in terms of the swirl-jet width and angle and altered the number of stagnation points on the swirler axis. When the passage length was reduced to half, two stagnation points appeared on the swirler axis due to an initially developed smaller recirculation zone at the swirler mouth. Also, the turbulent activity at the vicinity of the swirler increased with as the passage length reduced. Investigations on the relocation of the second stagnation point on the axis through an arbitrary window revealed identical standard deviation in x and y directions. The energetic coherent structures extracted from the proper orthogonal decomposition also identified major differences in terms of the spatial distribution of the modes and their corresponding energy levels. The experimental results indicated that if the passage length is altered, the number of stagnation points on the swirler axis increases, and a breakdown of both the bubble and cone vortex may appear at the same time as different energy levels.


Sign in / Sign up

Export Citation Format

Share Document