Critical Heat Flux in Helically Coiled Tubes

1981 ◽  
Vol 103 (4) ◽  
pp. 660-666 ◽  
Author(s):  
M. K. Jensen ◽  
A. E. Bergles

A study of boiling R-113 in electrically heated coils of various diameters is reported. Subcooled critical heat flux (CHF) is lower with coils than with straight tubes. The difference increases as mass velocity and ratio of tube diameter to coil diameter (d/D) increases. On the contrary, quality CHF is enhanced and increases with d/D; CHF initially increases with increasing mass velocity, but decreases after a maximum is reached. Operational problems, in particular upstream dryouts, can occur if a coiled tube is operated with low to moderate subcooling near the inlet and with moderately high heat fluxes.

Author(s):  
A. E. Bergles

During the past 20 years, there has been intense worldwide interest in microchannel heat exchangers, particularly for cooling of microelectronic components. Saturated boiling of the coolant is usually indicated in order to accommodate high heat fluxes and to have uniformity of temperature. However, boiling is accompanied by several instabilities, the most severe of which can sharply limit the maximum, or critical, heat flux. These stability phenomena are reviewed, and recent studies will be discussed. Elevation of the critical heat flux will be discussed within the context of heat transfer enhancement. Means to improve the stability of boiling and the enhancement of boiling heat transfer, in general, are discussed.


2006 ◽  
Vol 129 (7) ◽  
pp. 844-851 ◽  
Author(s):  
Ali Koşar ◽  
Yoav Peles

Critical heat flux (CHF) of R-123 in a silicon-based microchannel heat sink was investigated at exit pressures ranging from 227kPato520kPa. Critical heat flux data were obtained over effective heat fluxes ranging from 53W∕cm2to196W∕cm2 and mass fluxes from 291kg∕m2sto1118kg∕m2s. Flow images and high exit qualities suggest that dryout is the leading CHF mechanism. The effect of mass velocity, exit quality, and system pressure were also examined, and a new correlation is presented to represent the effect of these parameters.


Author(s):  
Carolyn Coyle ◽  
Harry O’Hanley ◽  
Bren Phillips ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

The effects of hydrophilic/hydrophobic surface patterning on critical heat flux (CHF) and heat transfer coefficient (HTC) were studied using custom-engineered testing surfaces. Patterning was created over a sapphire substrate and tested in a pool boiling facility in MITs Reactor Hydraulics Laboratory. The hydrophilic and hydrophobic matrices were created using layer by layer deposition of 50 nm thick SiO2 nanoparticles and monolayer thickness fluorosilane, respectively. Ultraviolet ozone patterning was then used with chrome-printed masks to create the desired geometric features. Hexagon, ring, star, and mixed patterns were tested to determine their abilities to affect CHF and HTC through prevention of bubble pinning at high heat fluxes. During testing, an infrared camera was used to measure the surface temperature distribution as well as locate nucleation sites for data analysis. It was found that CHF values were enhanced over the bare sapphire values by approximately 90% for hexagons, 60% for stars, 65% for rings, and 50% for mixed patterns. Contrary to expectations, patterning did not seem to affect the HTC values significantly. Although patterning did improve CHF performance over bare heaters, both CHF and HTC were found to be statistically similar to those for unpatterned, uniformly hydrophilic surfaces.


Author(s):  
Sergio Escobar-Vargas ◽  
Jorge E. Gonzalez ◽  
Orlando Ruiz ◽  
Cullen Bash ◽  
Ratnesh Sharma ◽  
...  

The increasing power density on electronic components has resulted in temperature problems related to the generation of hot spots and the need to remove high heat flux in small areas. This work is aimed at the cooling of small surfaces (1 mm × 1.2 mm) by using a monodisperse spray from thermal ink jet (TIJ) atomizers. Heat fluxes near the critical heat flux (CHF) are obtained for different conditions of cooling mass flow rate, droplet deposition, and number of active droplet jets. Experimental results at quasiequilibrium show the heat flux scales to the cooling mass flow rate. It is observed that two simultaneously activated jets result in slightly smaller heat flux compared to a single jet of droplets for the same mass flow rate. Droplet momentum and spreading or splashing, as determined by a combination of Weber number and Reynolds number effect via K = We1/2Re1/4, may impact the efficiency of the delivery of the cooling mass flow. Current experimental results at K = 24.5 and K = 52.2 for the copper surface temperatures ranging 110 – 120 °C indicate there is little influence of the splashing on the heat dissipation. System heat losses are measured experimentally and compared to a numerical and analytical solution to estimate the actual heat dissipated by the droplet change of phase.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Author(s):  
Yasuhisa Shinmoto ◽  
Shinichi Miura ◽  
Koichi Suzuki ◽  
Yoshiyuki Abe ◽  
Haruhiko Ohta

Recent development in electronic devices with increased heat dissipation requires severe cooling conditions and an efficient method for heat removal is needed for the cooling under high heat flux conditions. Most researches are concentrated on small semiconductors with high heat flux density, while almost no existing researches concerning the cooling of a large semiconductor, i.e. power electronics, with high heat generation density from a large cooling area. A narrow channel between parallel plates is one of ideal structures for the application of boiling phenomena which uses the cooling for such large semiconductors. To develop high-performance cooling systems for power electronics, experiments on increase in critical heat flux (CHF) for flow boiling in narrow channels by improved liquid supply was conducted. To realize the cooling of large areas at extremely high heat flux under the conditions for a minimum gap size and a minimum flow rate of liquid supplied, the structure with auxiliary liquid supply was devised to prevent the extension of dry-patches underneath flattened bubbles generated in a narrow channel. The heating surface was experimented in two channels with different dimensions. The heating surfaces have the width of 30mm and the lengths of 50mm and 150mm in the flow direction. A large width of actual power electronics is realizable by the parallel installation of the same channel structure in the transverse direction. The cooling liquid is additionally supplied via sintered metal plates from the auxiliary unheated channels located at sides or behind the main heated channel. To supply the liquid to the entire heating surface, fine grooves are machined on the heating surface for enhance the spontaneous liquid supply by the aid of capillary force. The gap size of narrow channels are varied as 0.7mm, 2mm and 5mm. Distribution of liquid flow rate to the main heated channel and the auxiliary unheated channels were varied to investigate its effect on the critical heat flux. Test liquids employed are R113, FC72 and water. The systematic experiments by using water as a test liquid were conducted. Critical heat flux values larger than 2×106W/m2 were obtained at both gap sizes of 2mm and 5mm for a heated length of 150mm. A very high heat transfer coefficient as much as 1×105W/m2K was obtained at very high heat flux near CHF for the gap size of 2mm. This paper is a summary of experimental results obtained in the past by the present authors.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

The cooling capacity of two-phase transport in microchannels is limited by the occurrence of critical heat flux (CHF). Due to the nature of the phenomenon, it is challenging to obtain reliable CHF data without causing damage to the device under test. In this work, the critical heat fluxes for flow boiling of FC-77 in a silicon thermal test die containing 60 parallel microchannels were measured at five total flow rates through the microchannels in the range of 20–80 ml/min. CHF is caused by dryout at the wall near the exit of the microchannels, which in turn is attributed to the flow reversal upstream of the microchannels. The bubbles pushed back into the inlet plenum agglomerate; the resulting flow blockage is a likely cause for the occurrence of CHF which is marked by an abrupt increase in wall temperature near the exit and an abrupt decrease in pressure drop across the microchannels. A database of 49 data points obtained from five experiments in four independent studies with water, R-113, and FC-77 as coolants was compiled and analyzed. It is found that the CHF has a strong dependence on the coolant, the flow rate, and the area upon which the heat flux definition is based. However, at a given flow rate, the critical heat input (total heat transfer rate to the coolant when CHF occurs) depends only on the coolant and has minimal dependence on the details of the microchannel heat sink (channel size, number of channels, substrate material, and base area). The critical heat input for flow boiling in multiple parallel microchannels follows a well-defined trend with the product of mass flow rate and latent heat of vaporization. A power-law correlation is proposed which offers a simple, yet accurate method for predicting the CHF. The thermodynamic exit quality at CHF is also analyzed and discussed to provide insights into the CHF phenomenon in a heat sink containing multiple parallel microchannels.


2005 ◽  
Vol 127 (1) ◽  
pp. 101-107 ◽  
Author(s):  
A. E. Bergles ◽  
S. G. Kandlikar

The critical heat flux (CHF) limit is an important consideration in the design of most flow boiling systems. Before the use of microchannels under saturated flow boiling conditions becomes widely accepted in cooling of high-heat-flux devices, such as electronics and laser diodes, it is essential to have a clear understanding of the CHF mechanism. This must be coupled with an extensive database covering a wide range of fluids, channel configurations, and operating conditions. The experiments required to obtain this information pose unique challenges. Among other issues, flow distribution among parallel channels, conjugate effects, and instrumentation need to be considered. An examination of the limited CHF data indicates that CHF in parallel microchannels seems to be the result of either an upstream compressible volume instability or an excursive instability rather than the conventional dryout mechanism. It is expected that the CHF in parallel microchannels would be higher if the flow is stabilized by an orifice at the entrance of each channel. The nature of CHF in microchannels is thus different than anticipated, but recent advances in microelectronic fabrication may make it possible to realize the higher power levels.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. Jung ◽  
S. J. Kim ◽  
J. Kim

Experimental work was undertaken to investigate the process by which pool-boiling critical heat flux (CHF) occurs using an IR camera to measure the local temperature and heat transfer coefficients on a heated silicon surface. The wetted area fraction (WF), the contact line length density (CLD), the frequency between dryout events, the lifetime of the dry patches, the speed of the advancing and receding contact lines, the dry patch size distribution on the surface, and the heat transfer from the liquid-covered areas were measured throughout the boiling curve. Quantitative analysis of this data at high heat flux and transition through CHF revealed that the boiling curve can simply be obtained by weighting the heat flux from the liquid-covered areas by WF. CHF mechanisms proposed in the literature were evaluated against the observations.


Sign in / Sign up

Export Citation Format

Share Document