A Stochastic Approach to Thermal Modeling Applied to Electro-Discharge Machining

1983 ◽  
Vol 105 (3) ◽  
pp. 555-562 ◽  
Author(s):  
S. M. Pandit ◽  
K. P. Rajurkar

The usual method of making some simplifying assumptions and formulating thermal models that yield results confirmed by experiments does not work in many cases where the problem is complex and random. Electro-Discharge Machining (EDM) is such a process that is not only complicated and random but also physically little understood. The paper illustrates thermal modeling of this process with the help of a recently developed stochastic methodology called Data Dependent Systems (DDS). An equation to the melting iosthermal curve is defined from the DDS (stochastic empirical) model obtained from readily measurable surface profiles of actual machined surfaces created by the random superposition of electrical discharges. This equation of the melting isothermal curve is then combined with the heat conduction equation, under rather realistic and intuitively obvious assumptions, to develop a transient temperature distribution. The form of this (hybrid) thermal model is mathematically much simpler and yet its predictions are much closer to the experimental results, compared to the complicated models proposed in the literature.

Author(s):  
Keiya Fujimoto ◽  
Hiroaki Hanafusa ◽  
Takuma Sato ◽  
Seiichiro HIGASHI

Abstract We have developed optical-interference contactless thermometry (OICT) imaging technique to visualize three-dimensional transient temperature distribution in 4H-SiC Schottky barrier diode (SBD) under operation. When a 1 ms forward pulse bias was applied, clear variation of optical interference fringes induced by self-heating and cooling were observed. Thermal diffusion and optical analysis revealed three-dimensional temperature distribution with high spatial (≤ 10 μm) and temporal (≤ 100 μs) resolutions. A hot spot that signals breakdown of the SBD was successfully captured as an anormal interference, which indicated a local heating to a temperature as high as 805 K at the time of failure.


2021 ◽  
Vol 141 (11) ◽  
pp. 712-717
Author(s):  
Akira Daibo ◽  
Yoshimitsu Niwa ◽  
Naoki Asari ◽  
Wataru Sakaguchi ◽  
Yo Sasaki ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2935 ◽  
Author(s):  
Sayantan Ganguly

An exact integral solution for transient temperature distribution, due to injection-production, in a heterogeneous porous confined geothermal reservoir, is presented in this paper. The heat transport processes taken into account are advection, longitudinal conduction and conduction to the confining rock layers due to the vertical temperature gradient. A quasi 2D heat transport equation in a semi-infinite porous media is solved using the Laplace transform. The internal heterogeneity of the geothermal reservoir is expressed by spatial variation of the flow velocity and the effective thermal conductivity of the medium. The model results predict the transient temperature distribution and thermal-front movement in a geothermal reservoir and the confining rocks. Another transient solution is also derived, assuming that longitudinal conduction in the geothermal aquifer is negligible. Steady-state solutions are presented, which determine the maximum penetration of the cold water thermal front into the geothermal aquifer.


2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 799-808
Author(s):  
Hungwei Liu ◽  
Wei Yao

Tunnel fire is a part of applied thermal problems. With increase of transient temperature of the tunnel fire on the structure surface (i.e. tunnel lining), the heat transfer from the surface is possibly varying transient temperature distribution within the structure. The transient temperature distribution is also possibly damaging the composition of structure (micro-crack) because of critical damage temperature. Therefore, the transient temperature distribution has a significantly important role on defining mechanical and physical properties of structure and determining thermal-induced damaged region. The damage at pre-period stage of tunnel fire is perhaps more significant than that at the other period stages because of thermal gradient. Consequently, a theoretical model was developed for simplifying complicated thermal engineering during pre-period stage of tunnel fire. A hollow solid model (HSM) in a combination of dimensional analysis and heat transfer theory with Bessel?s Function and Duhamel?s Theorem were employed to verify a theoretical equation for dimensionless transient temperature distribution (DTTD) under linear transient thermal loading (LTTL). Experimental and numerical methods were also adopted to approve the results from this theoretical equation. The heating rate (M) is a primary variable for discussing DTTD on three means. The heating rate of 10.191, 10 and 240?C/min were applied to experimental and numerical studies. The experimental and numerical results are consistent with the theoretical solution, successfully verifying that the theoretical solution can predict the DTTD well in field. This equation can be used for thermal/tunnel engineers to evaluate the damaged region and to obtain the parameters related to DTTD.


1965 ◽  
Vol 87 (1) ◽  
pp. 117-130 ◽  
Author(s):  
R. D. Zerkle ◽  
J. Edward Sunderland

The transient, one-dimensional temperature distribution is determined for a slab, insulated on one face, and subjected to thermal radiation at the other face. The slab is initially at a uniform temperature and is assumed to be homogeneous, isotropic, and opaque; the physical properties are assumed to be independent of temperature. Transient temperature distributions for both heating and cooling situations are obtained by means of a thermal-electrical analog computer. A diode limiter circuit is used to simulate the nonlinear radiant heat flux. The transient temperature distributions are presented in a dimensionless, graphical form for a wide range of variables. Approximate analytical solutions are also given which complement and extend the solution charts over ranges of parameters not covered in the charts.


Sign in / Sign up

Export Citation Format

Share Document