Compact Self-Damped Pneumatic Isolators for Road Vehicles

1980 ◽  
Vol 102 (2) ◽  
pp. 270-277 ◽  
Author(s):  
E. Esmailzadeh

Better isolation of vibration and minimum resonant transmissibility of a self-damped pneumatic isolator is achieved when the incorporated surge lank possesses a large volume compared to that of the isolator. This implies that the self-damped pneumatic isolator employed in vibration isolation for road vehicles is quite bulky and not practical for isolation systems where space and mass are the main limitations. It is also assumed that the surge tank has a fixed volume which is independent of relative motions of the body and the wheel. These drawbacks have been avoided by introducing a smaller surge tank, in the form of another pneumatic isolator, which is placed between the wheel and the road surface. It is shown that these two pneumatic isolators together with the capillary restrictor provide the damping mechanism in the form of the self-damped pneumatic isolator. Moreover, this variable volume surge tank acts as a sensor for the relative motion of the wheel and, hence, improves the displacement transmissibility of the body considerably. An optimization method is developed to evaluate the optimum values of the variables to yield the minimum transmitted motion to the body.

Author(s):  
A.S. Gusev ◽  
L.V. Zinchenko ◽  
S.A. Starodubtseva

When designing technical structures, the safety of their elements is a fundamental principle. This highlights the significance of the proposed solution to the structural analysis of the trajectories of non-Gaussian stationary processes. The solution aims to acquire source data for calculating the stress-strength reliability of structural elements operating under random loads. We analyze an approach that makes it possible to account for the statistical dependence between processes and their derivatives, despite the apparent lack of correlation between them. The considered approach can be utilized in the design of vibration protection of transport vehicles to calculate the probability of a shock absorber breakdown, the probability of loss of the road-wheel contact, etc. The operation reliability of such systems is defined as the probability that the absolute maximum of the process does not exceed the specified standard level during a certain time interval. The article presents the reliability calculation using structural analysis on the example of a one-dimensional stochastic system.


Author(s):  
Jahangir Rastegar ◽  
Farshad Khorrami

Vibration isolation devices are used to attach various systems to their base structure to reduce the transmission of vibration from and/or to the base structure. Vibration isolation devices allow relative motion between the isolated system and the base platform. This relative motion is critical to the effective operation of vibration isolation devices and is used to absorb or divert vibration energy using spring and viscous damping or dry friction elements. In general, larger the allowed relative motion, more effective will be the performance of the isolation system. In certain applications, the introduced relative motion by the vibration isolation device introduces unavoidable and unwanted motion of the isolated system and can significantly degrade its performance, particularly in terms of positioning precision, or limit the range of allowable relative motion, thereby reducing the effectiveness of the isolation system. In this paper, a novel method is presented that uses appropriate linkage mechanisms to constrain relative motions that are introduced by the vibration isolation system that are not necessary for the proper operation of the vibration isolation system but their presence would degrade the performance of the entire system. As an example, a novel double-parallelogram based motion constraining mechanism is presented, which is used to constrain rotational (rocking) motion of an isolation system without hindering its relative translational motion used for vibration isolation. The design of a prototype of such a linkage mechanism used to isolate payloads from launch vehicles during the launch and the results of its successful testing are presented. Other applications of the present method are discussed.


2018 ◽  
Vol 8 (1) ◽  
pp. 49-66
Author(s):  
Monika Szuba

The essay discusses selected poems from Thomas Hardy's vast body of poetry, focusing on representations of the self and the world. Employing Maurice Merleau-Ponty's concepts such as the body-subject, wild being, flesh, and reversibility, the essay offers an analysis of Hardy's poems in the light of phenomenological philosophy. It argues that far from demonstrating ‘cosmic indifference’, Hardy's poetry offers a sympathetic vision of interrelations governing the universe. The attunement with voices of the Earth foregrounded in the poems enables the self's entanglement in the flesh of the world, a chiasmatic intertwining of beings inserted between the leaves of the world. The relation of the self with the world is established through the act of perception, mainly visual and aural, when the body becomes intertwined with the world, thus resulting in a powerful welding. Such moments of vision are brief and elusive, which enhances a sense of transitoriness, and, yet, they are also timeless as the self becomes immersed in the experience. As time is a recurrent theme in Hardy's poetry, this essay discusses it in the context of dwelling, the provisionality of which is demonstrated in the prevalent sense of temporality, marked by seasons and birdsong, which underline the rhythms of the world.


Author(s):  
Joshua S. Walden

The book’s epilogue explores the place of musical portraiture in the context of posthumous depictions of the deceased, and in relation to the so-called posthuman condition, which describes contemporary changes in the relationship of the individual with such aspects of life as technology and the body. It first examines Alfred Hitchcock’s Vertigo to view how Bernard Herrmann’s score relates to issues of portraiture and the depiction of the identity of the deceased. It then considers the work of cyborg composer-artist Neil Harbisson, who has aimed, through the use of new capabilities of hybridity between the body and technology, to convey something akin to visual likeness in his series of Sound Portraits. The epilogue shows how an examination of contemporary views of posthumous and posthuman identities helps to illuminate the ways music represents the self throughout the genre of musical portraiture.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3849
Author(s):  
Martin Svoboda ◽  
Milan Chalupa ◽  
Karel Jelen ◽  
František Lopot ◽  
Petr Kubový ◽  
...  

The article deals with the measurement of dynamic effects that are transmitted to the driver (passenger) when driving in a car over obstacles. The measurements were performed in a real environment on a defined track at different driving speeds and different distributions of obstacles on the road. The reaction of the human organism, respectively the load of the cervical vertebrae and the heads of the driver and passenger, was measured. Experimental measurements were performed for different variants of driving conditions on a 28-year-old and healthy man. The measurement’s main objective was to determine the acceleration values of the seats in the vehicle in the vertical movement of parts of the vehicle cabin and to determine the dynamic effects that are transmitted to the driver and passenger in a car when driving over obstacles. The measurements were performed in a real environment on a defined track at various driving speeds and diverse distributions of obstacles on the road. The acceleration values on the vehicle’s axles and the structure of the driver’s and front passenger’s seats, under the buttocks, at the top of the head (Vertex Parietal Bone) and the C7 cervical vertebra (Vertebra Cervicales), were measured. The result of the experiment was to determine the maximum magnitudes of acceleration in the vertical direction on the body of the driver and the passenger of the vehicle when passing a passenger vehicle over obstacles. The analysis of the experiment’s results is the basis for determining the future direction of the research.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra ◽  
Timothy G. Hunter

This paper presents a comprehensive model to capture the dynamics of a motorcycle system in order to evaluate the quality of vibration isolation. The two main structural components in the motorcycle assembly - the frame and the swing-arm - are modeled using reduced order finite element models; the power-train assembly is modeled as a six degree-of-freedom (DOF) rigid body connected to the frame through the engine mounts and to the swing-arm through a shaft assembly. The engine mounts are modeled as tri-axial spring-damper systems. Models of the front-end assembly as well as front and rear tires are also included in the overall model. The complete vehicle model is used to solve the engine mount optimization problem so as to minimize the total force transmitted to the frame while meeting packaging and other side constraints. The mount system parameters - stiffness, position and orientation vectors - are used as design variables for the optimization problem. The imposed loads include forces and moments due to engine imbalance as well as loads transmitted due to irregularities in the road surface through the tire patch.


Sign in / Sign up

Export Citation Format

Share Document