Adjustable Straight-Line Linkages—Possible Legged-Vehicle Applications

1985 ◽  
Vol 107 (2) ◽  
pp. 256-261 ◽  
Author(s):  
A. D. Ryan ◽  
K. H. Hunt

The stimulus for this paper is the expressed need in proposals for legged vehicles both to propel the vehicle in rectilinear translation parallel to the mean ground-profile beneath it and to allow the chassis-height to be adjustable. Energy considerations point toward having a single propulsion-actuator on each leg-linkage rather than adopting the less economical option of simultaneous actuation at two or more serially connected leg-joints. Of the linkages whose kinematics are here studied some relate more closely to legged vehicles than others do; the paper should be viewed in a general rather than a specific context. Exact and approximate straight-line planar linkages are covered. Derivatives of Richard Roberts’s linkage are put forward as those that are the most promising adjustable linkages whose joints are all turning pairs.

Author(s):  
Hung Phuoc Truong ◽  
Thanh Phuong Nguyen ◽  
Yong-Guk Kim

AbstractWe present a novel framework for efficient and robust facial feature representation based upon Local Binary Pattern (LBP), called Weighted Statistical Binary Pattern, wherein the descriptors utilize the straight-line topology along with different directions. The input image is initially divided into mean and variance moments. A new variance moment, which contains distinctive facial features, is prepared by extracting root k-th. Then, when Sign and Magnitude components along four different directions using the mean moment are constructed, a weighting approach according to the new variance is applied to each component. Finally, the weighted histograms of Sign and Magnitude components are concatenated to build a novel histogram of Complementary LBP along with different directions. A comprehensive evaluation using six public face datasets suggests that the present framework outperforms the state-of-the-art methods and achieves 98.51% for ORL, 98.72% for YALE, 98.83% for Caltech, 99.52% for AR, 94.78% for FERET, and 99.07% for KDEF in terms of accuracy, respectively. The influence of color spaces and the issue of degraded images are also analyzed with our descriptors. Such a result with theoretical underpinning confirms that our descriptors are robust against noise, illumination variation, diverse facial expressions, and head poses.


2013 ◽  
Vol 15 (1) ◽  
pp. 115 ◽  
Author(s):  
A. HATTOUR ◽  
W. KOCHED

The present study analysis size and weight-frequency composition of Atlantic bluefin tuna (Thunnus thynnus thynnus) fattened in Tunisian farms for the period 2005-2010 and compare these morphometric parameters with those from wild bluefin tuna landed on 2001 at Sfax port (Tunisia). A total of 6,757 wild and fattened bluefin tuna were measured as straight-line fork length and 49,962 were weighted. Average value of K for wild BFT was 1.59 and respectively 2.43, 2.32, 2.15, 1.61, 1.79 and 1.90 for Fattened BFT after 5-6 months from 2005 to 2010. Length frequency of fattened bluefin showed clearly a substantial increase in juvenile rate. The percentage which was 21.4% in 2005 reached 31.3% in 2009. For weight distribution, 73.3% of the fish caught in 2001 are below the annual mean (75.7 kg), while means 71 to 72% of fattened fish were under annual mean weight. Year 2009 is exceptional because only 57% of fattened fish were under the mean weight. This demonstrates that the fish caught are becoming increasingly small. Mean weight for fattening period (77 to 124 kg) are obviously higher than those of the wild fish (75,7kg).This study showed an increment in the amount of specimen under first sexual maturity which will not have the chance to spawn.


1993 ◽  
Vol 39 (5) ◽  
pp. 766-772 ◽  
Author(s):  
K Emancipator ◽  
M H Kroll

Abstract Quantitative measures of the nonlinearity of an analytical method are defined as follows: the "(dimensional) nonlinearity" of a method is the square root of the mean of the square of the deviation of the response curve from a straight line, where the straight line is chosen to minimize the nonlinearity. The "relative nonlinearity" is defined as the dimensional nonlinearity divided by the difference between the maximum and minimum assayed values. These definitions may be used to develop practical criteria for linearity that are still objective. Calculation of the nonlinearity requires a method of curve-fitting. In this article, we use polynomial regression to demonstrate calculations, but the definition of nonlinearity also accommodates alternative nonlinear regression procedures.


1960 ◽  
Vol 15 (2) ◽  
pp. 225-228 ◽  
Author(s):  
John H. Knowles ◽  
William Newman ◽  
Wallace O. Fenn

At the end of a normal expiration the subject inhaled a given volume of gas mixtures containing different concentrations of CO2 in O2 from 5 to 17%. These were held in the lung for 3 and then again for 12 seconds and were then expired and analyzed. Analyses were made with an infrared analyzer and times were obtained from the graphical record. If the rate of change of CO2 tension is plotted against the mean CO2 tension a straight line results which passes through zero rate at the tension which equals the tension of CO2 in the mixed oxygenated venous blood. From the slope of this straight line it is possible to calculate the cardiac output if the lung volume and slope of the CO2 dissociation curve of the blood are known. Data are presented from 37 experiments on 10 subjects. The method is believed to be theoretically sound but has not been validated as a practical clinical method. Occasional erratic points were obtained, especially in untrained subjects. The standard error of the mean value for venous CO2 tension was 1.9 mm Hg. Submitted on July 13, 1959


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0002
Author(s):  
Michael Hull ◽  
Tyler Rutherford ◽  
Clifford Jeng ◽  
John T. Campbell ◽  
Rebecca Cerrato

Category: Basic Sciences/Biologics, Hindfoot Introduction/Purpose: Sinus Tarsi syndrome is a frequent cause of anterolateral foot pain following injury. Chronic lateral subtalar pain, often referred to as “Sinus Tarsi Syndrome”, is commonly reported to occur following trauma. One hypothetical epidemiological predisposing factor for sinus tarsi syndrome is flatfoot deformity with valgus hind foot alignment. Common conservative treatment includes medial heel posting to attempt to widen the sinus tarsi space and alleviate synovitic pain. Although treatment with operative intervention has been reported, no data exists to evaluate if hindfoot realignment functionally opens the sinus tarsi volume. Methods: Weight-bearing Computed Tomography (CT) scans were obtained in 5 healthy volunteers standing at rest on slanted platforms, 25 degree valgus and 25 degree varus. The volume of the sinus tarsi was measured on each scan. Cross sectional area of the sinus tarsi was measured in 3.6 mm slices from the most lateral fully enclosed image to the most lateral aspect of the middle facet of the subtalar joint. Area measurements were multiplied by cut depth (3.6 mm) and summed. Critical angle distance was measured as a straight line from the most lateral point of the lateral process of the talus to the base of the critical angle of Gissane. Subfibular distance was then measured from the most distal tip of the fibula in a straight line to the nearest point of the lateral calcaneal wall. Data were compared using a one way ANOVA and Tukey’s multiple comparison test. Results: The mean sinus tarsi volume in the valgus position was 325.1 mm3 (±88) and 313.3 (±71) for the left and right foot, respectively. In the varus position, the mean sinus tarsi volume increased to 646.8 mm3 (±169) and 599 mm3 (±203). There was a significant difference between the varus and valgus position for both feet (left p<0.01 / right p<0.05). The critical angle distance increased from 28.1 mm (±7.5) to 91.3 mm (±26) for the left foot and 26.3 mm (±7.6) to 87 mm (±27.9) for the right foot when realigned to the varus position (p<0.0001). There was not a significant increase in the sub fibular distance when repositioned from valgus to varus (p=0.06 / p=0.35). Conclusion: This study confirms that moving from a valgus to a varus position significantly increases the volume of the sinus tarsi as well as significantly increases the distance from the lateral process of the talus to the calcaneal angle of Gissane. Interestingly, subfibular distance did not significantly increase, although this may reach significance with increased samples. With confirmation that adjusting hindfoot positioning impacts lateral osseous impingement, future studies are warranted to correlate these findings with clinical symptoms.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Robert D. Wojtyczka ◽  
Andrzej Zięba ◽  
Arkadiusz Dziedzic ◽  
Małgorzata Kępa ◽  
Danuta Idzik

Microorganisms present in different environments have developed specific mechanisms of settling on various abiotic and biotic surfaces by forming a biofilm. It seems to be well justified to search for new compounds enabling biofilm reduction, which is highly resistant to antibiotics. This study was thus an initial assessment of the antibacterial activity of two new quinoline derivatives of a structure of 3-thioacyl 1-methyl 4-arylaminoquinolinium salts against coagulase-negative staphylococci (CoNS) isolated from a hospital environment, in a form of both biofilms and in planktonic form. Thirty-three stains of CoNS isolated from the hospital environment (air, surfaces) and seven reference strains from the ATCC collection were selected for the study. The mean MIC value for 1-methyl-3-benzoylthio-4-(4-chlorophenylamino)quinolinum chloride (4-chlorophenylamino derivative) was 42.60 ± 19.91 μg/mL, and in the case of strains subjected to 1-methyl-3-benzoylthio-4-(4-fluorophenylamino)quinolinum chloride (4-fluorophenylamino derivative) activity, the mean MIC value was 43.20 ± 14.30 μg/mL. The mean concentration of 4-chlorophenylamino derivative that inhibited biofilm formation was 86.18 ± 30.64 μg/mL. The mean concentration of 4-fluorophenylamino derivatives that inhibited biofilm formation was higher and amounted to 237.09 ± 160.57 μg/mL. Based on the results, both derivatives of the examined compounds exhibit high antimicrobial activity towards strains growing both in planktonic and biofilm form.


2011 ◽  
Vol 25 (22) ◽  
pp. 1839-1845 ◽  
Author(s):  
ARTEM V. BABICH ◽  
LESYA N. KITCENKO ◽  
VYACHESLAV F. KLEPIKOV

In this article, we consider a model that allows one to describe critical phenomena in systems with higher powers and derivatives of order parameter. The systems considered have critical points with joint multicritical and Lifshitz-point-like properties. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work.


2004 ◽  
Vol 71 (1) ◽  
pp. 134-138 ◽  
Author(s):  
T. M. Atanackovic ◽  
D. T. Spasic

We study dynamics of a mass, moving on a straight line, and impacting against the rigid wall through a deformable body, that we model as a straight rod of negligible mass. The chosen constitutive model of the viscoelastic body comprises fractional derivatives of stress and strain and the restrictions on the coefficients that follow from Clausius Duhem inequality. We show that the dynamics of the problem is governed by a single differential equation of real order. The obtained equation was solved numerically. The comparison is made to the solution obtained by the Laplace transform and Post’s inversion formula. The predictions of the model concerning the duration of the impact, maximal values of the impacting force and deformation as well as the restitution coefficient are determined for several values of system parameters.


1920 ◽  
Vol 2 (5) ◽  
pp. 445-464 ◽  
Author(s):  
Joseph Krafka

Three strains of the bar-eyed mutant of Drosophila melanogaster Meig have been reared at constant temperatures over a range of 15–31°C. The mean facet number in the bar-eyed mutant varies inversely with the temperature at which the larvæ develop. The temperature coefficient (Q10) is of the same order as that for chemical reactions. The facet-temperature relations may be plotted as an exponential curve for temperatures from 15–31°. The rate of development of the immature stages gives a straight line temperature curve between 15 and 29°. Beyond 29° the rate decreases again with a further rise in temperature. The facet curve may be readily superimposed on the development curve between 15 and 27°. The straight line feature of the development curve is probably due to the flattening out of an exponential curve by secondary factors. Since both the straight line and the exponential curve appear simultaneously in the same living material, it is impractical to locate the secondary factors in enzyme destruction, differences in viscosity, or in the physical state of colloids. Differential temperature coefficients for the various separate processes involved in development furnish the best basis for an explanation of the straight line feature of the curve representing the effect of temperature on the rate of physiological processes. Facet number in the full-eyed wild stock is not affected by temperature to a marked degree. The mean facet number for fifteen full-eyed females raised at 27° is 859.06. The mean facet number for the Low Selected Bar females at 27° is 55.13; for the Ultra-bar females at 27° it is 21.27. A consistent sexual difference appears in all the bar stocks, the females having fewer facets. This relation may be expressed by the sex coefficient, the average value of which is 0.791. The average observed difference in mean facet number for a difference of 1°C. in the environment in which the flies developed is 3.09 for the Ultra-bar stock and 14.01 for the Low Selected stock. The average proportional differences in the mean for a difference of 1°C. are 9.22 per cent for Ultra-bar, and 14.51 for Low Selected. The differences in the number of facets per °C. are greatest at the low and least at the high temperatures. The difference in the number of facets per °C. varies with the mean. The proportional differences in the mean per °C. are greatest at the lower (15–17.5°) and higher (29–31°) temperatures and least at the intermediate temperatures. Temperature is a factor in determining facet number only during a relatively short period in larval development. This effective period, at 27°, comes between the end of the 3rd and the end of the 4th day. At 15°, this period is initiated at the end of 8 days following a 1st day at 27°. At 27° this period is approximately 18 hours long. At 15° it is approximately 72 hours long. The number of facets and the length of the immature stage (egg-larval-pupal) appear related when the whole of development is passed at one temperature. That the number of facets is not dependent upon the length of the immature stage is shown by experiments in which only a part of development was passed at one temperature and the remainder at another. Temperature affects the reaction determining the number of facets in approximately the same way that it affects the other developmental reactions, hence the apparent correlation between facet number and the length of the immature stage. Variability as expressed by the coefficient of variability has a tendency to increase with temperature. Standard deviation, on the other hand, appears to decrease with rise in temperature. Neither inheritance nor induction effects are exhibited by this material. This study shows that environment may markedly affect the somatic expression of one Mendelian factor (bar eye), while it has no visible influence on another (white eye).


2010 ◽  
Vol 3 (6) ◽  
pp. 1629-1646 ◽  
Author(s):  
H. K. Roscoe ◽  
M. Van Roozendael ◽  
C. Fayt ◽  
A. du Piesanie ◽  
N. Abuhassan ◽  
...  

Abstract. In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.


Sign in / Sign up

Export Citation Format

Share Document