Surface-Roughness Effects in Rolling Contact

1972 ◽  
Vol 39 (2) ◽  
pp. 456-460 ◽  
Author(s):  
P. Ranganath Nayak

A theory of rolling contact is presented which deviates from past theories in two respects: (a) the contacting surfaces are not assumed to be topographically smooth, and (b) Coulomb’s law of friction is replaced by a law describing the behavior of interfacial friction junctions. Numerical results for the slip as a function of the normal and tangential loads are shown to depend on a roughness parameter D, which, in turn, depends on surface topography, the gross geometry of the contacting bodies and on the normal load. It is found that when D is large (i.e., the surfaces are very rough, or the normal load is small), the slip-force relationship differs considerably from that predicted by the smooth-surface (or classical) theory. When D tends to zero, the two theories coincide. The dependence of D on topographical parameters is shown explicitly. Numerical examples indicate that for cylinders of small radius, surface-roughness effects may be important. Their importance decreases as the cylinder radius or the maximum contact pressure is increased, or the surface is made smoother.

2019 ◽  
Vol 49 (3) ◽  
pp. 193-200
Author(s):  
N. A. ZABALA ◽  
P. CASTRO ◽  
Walter TUCKART

The purpose of this study is to determinate the influence of surface roughness on the tribological behavior of a lubricated steel against steel tribosystem. Tests were carried out at high pressure and slow sliding speed, in order to simulate at small scale, the contact conditions found in the seal of the threaded joints used in oil & gas casing and tubing strings. Tests were carried out with a simplified block-onring test, varying the surface roughness of rings between 1.3 to 3 m Ra values. A thread compound lubricant containing lead, copper, zinc and graphite was used. During each cycle of test, the normal load was varied linearly between 250 N and 7000 N. An exponential correlation between Ra and Rt roughness values with the wear damage was found and the wear damage of the blocks decreases about 40 percent with the increasing of initial Ra roughness parameter in the movil surface.


2007 ◽  
Vol 23 (4) ◽  
pp. 341-352 ◽  
Author(s):  
J. L. Liou ◽  
J. F. Lin

ABSTRACTThe elastic-plastic microcontact model of a sphere in contact with a flat plate is developed in the present study to investigate the effect of surface roughness on the total contact area and contact load. From the study done by the finite element method, the dimensionless asperity contact area, average contact pressure, and contact load in the elastoplastic regime are assumed to be a power form as a function of dimensionless interference (δ/δec). The coefficients and exponents of the power form expressions can be determined by the boundary conditions set at the two ends of the elastoplastic deformation regime. The contact pressures evaluated by the present model are compared with those predicted by the Hertz theory, without considering the surface roughness and the reported model, including the roughness effect, but only manipulating in the elastic regime. The area of non-zero contact pressure is enlarged if the surface roughness is considered in the microcontact behavior. The maximum contact pressure is lowered by the presence of surface roughness if the contact load is fixed. Under a normal load, both the contact pressure and the contact area are elevated by raising the plasticity index for the surface of the same surface roughness.


Author(s):  
K. S. Parel ◽  
R. J. Paynter ◽  
D. Nowell

Measurements with digital image correlation of normal and tangential contact stiffness for ground Ti-6Al-4V interfaces suggest a linear relationship between normal contact stiffness and normal load and a linear relationship between tangential contact stiffness and tangential load. The normal contact stiffness is observed approximately to be inversely proportional to an equivalent surface roughness parameter, defined for two surfaces in contact. The ratio of the tangential contact stiffness to the normal contact stiffness at the start of tangential loading is seen to be given approximately by the Mindlin ratio. A simple empirical model is proposed to estimate both the normal and tangential contact stiffness at different loads for a ground Ti-6Al-4V interface, on the basis of the equivalent surface roughness and the coefficient of friction.


1993 ◽  
Vol 115 (4) ◽  
pp. 566-572 ◽  
Author(s):  
R. M. Crone ◽  
P. R. Peck ◽  
M. S. Jhon ◽  
T. E. Karis

The current trend in the magnetic storage industry is the reduction of the slider size and the height at which the slider flies over a rigid disk. Lower flying heights are achieved by miniaturizing sliders and reducing the normal load. In this paper, force scaling criteria are determined for 3370 and 3370K sliders that are dynamically loaded or operated in contact start/stop mode. Two forms of the generalized Reynolds equation (the first-order and continued fraction formulations) are incorporated into the analysis. The new scaling equation relates the steady-state flying height to design and operating parameters such as the disk velocity, normal load, ambient pressure, and the shape and dimension of the slider rail. The resulting quadratic equation contains two slider design dependent parameters which are calculated from two full scale numerical solutions to the generalized Reynolds equation for the slider design of interest. The new scaling equation accurately fits numerical and experimental results over an extremely wide range of ambient pressures, normal loads, disk velocities, and slider size reduction. The utility of the scaling equation is that it can rapidly and accurately predict the load required to obtain a desired flying height at a given disk velocity for any slider geometry. The scaling analysis also has the ability to qualitatively account for surface roughness effects. The equation could be applied to the design of contact recording devices, if surface roughness effects could be quantitatively incorporated into the analysis.


2007 ◽  
Vol 129 (4) ◽  
pp. 754-760 ◽  
Author(s):  
Chul-Hee Lee ◽  
Andreas A. Polycarpou

An experimental study was conducted to measure the static friction coefficient under constant normal load and different interface conditions. These include surface roughness, dwell time, displacement rate, as well as the presence of traces of lubricant and wear debris at the interface. The static friction apparatus includes accurate measurement of friction, normal and lateral forces at the interface (using a high dynamic bandwidth piezoelectric force transducer), as well as precise motion control and measurement of the sliding mass. The experimental results show that dry surfaces are more dependent on the displacement rate prior to sliding inception compared to boundary lubricated surfaces in terms of static friction coefficient. Also, the presence of wear debris, boundary lubrication, and rougher surfaces decrease the static friction coefficient significantly compared to dry smooth surfaces. The experimental measurements under dry unlubricated conditions were subsequently compared to an improved elastic-plastic static friction model, and it was found that the model captures the experimental measurements of dry surfaces well in terms of the surface roughness.


Author(s):  
J. Nyqvist ◽  
A. Kadiric ◽  
R. Sayles ◽  
S. Ioannides

A recently developed thermo-mechanical model was used to investigate the influence of surface roughness characteristics on the maximum contact temperature rise as well as shear stresses in rough surface contacts subjected to normal and tangential loading. In order to identify prevailing trends clearly the surfaces were modelled as having idealised sinusoidal roughness. Following a brief description of the numerical model, results are presented to illustrate the dependence of contact temperature and stresses on roughness parameters such as wavelength and amplitude as well as the contact Peclet number. An attempt is made to explain the observed trends in terms of variation in predicted pressure distribution and real contact areas for different surfaces.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1317
Author(s):  
Michal Skrzyniarz ◽  
Lukasz Nowakowski ◽  
Edward Miko ◽  
Krzysztof Borkowski

The shaping process of surface texture is complicated and depends on many factors and phenomena accompanying them. This article presents the author’s test stand for the measurement of relative displacements in a tool–workpiece system during longitudinal turning. The aim of this study was to determine the influence of edge radius on the relative displacement between the tool and workpiece. The cutting process was carried out with inserts with different edge radii for X37CrMoV5-1 steel. As a result of the research, vibration charts of the tool–workpiece system were obtained. In the range of feed 0.03–0.18 mm/rev, the values of the standard deviation of relative displacements in the x-axis were obtained in the range of 0.36–0.78 μm for the insert with an edge radius of rn = 48.8 μm. As a result of the work, it was determined that for the feed value of 0.12 mm/rev for all inserts, the relative displacements are the smallest. As the final effect, the formula for forecasting the Ra roughness parameter was presented.


Sign in / Sign up

Export Citation Format

Share Document