Scaling Criteria for Slider Miniaturization Using the Generalized Reynolds Equation

1993 ◽  
Vol 115 (4) ◽  
pp. 566-572 ◽  
Author(s):  
R. M. Crone ◽  
P. R. Peck ◽  
M. S. Jhon ◽  
T. E. Karis

The current trend in the magnetic storage industry is the reduction of the slider size and the height at which the slider flies over a rigid disk. Lower flying heights are achieved by miniaturizing sliders and reducing the normal load. In this paper, force scaling criteria are determined for 3370 and 3370K sliders that are dynamically loaded or operated in contact start/stop mode. Two forms of the generalized Reynolds equation (the first-order and continued fraction formulations) are incorporated into the analysis. The new scaling equation relates the steady-state flying height to design and operating parameters such as the disk velocity, normal load, ambient pressure, and the shape and dimension of the slider rail. The resulting quadratic equation contains two slider design dependent parameters which are calculated from two full scale numerical solutions to the generalized Reynolds equation for the slider design of interest. The new scaling equation accurately fits numerical and experimental results over an extremely wide range of ambient pressures, normal loads, disk velocities, and slider size reduction. The utility of the scaling equation is that it can rapidly and accurately predict the load required to obtain a desired flying height at a given disk velocity for any slider geometry. The scaling analysis also has the ability to qualitatively account for surface roughness effects. The equation could be applied to the design of contact recording devices, if surface roughness effects could be quantitatively incorporated into the analysis.

The hydrodynamic lubrication of rough surfaces is analysed with the Reynolds equation, whose application requires the roughness spacing to be large, and the roughness height to be small, compared with the thick­ness of the fluid film. The general two-dimensional surface roughness is considered, and results applicable to any roughness structure are obtained. It is revealed analytically that two types of term contribute to roughness effects: one depends on the shape of the autocorrelation function and the other does not. The former contribution was neglected by previous workers. The numerical computation of an example shows that these two contributions are comparable in magnitude.


Author(s):  
C. Guardino ◽  
J. W. Chew ◽  
N. J. Hills

The effects of surface roughness on air-riding seals are investigated here using the Rayleigh-pad as an example. Both incompressible and compressible flows are considered using both CFD analysis and analytical/numerical solutions of the Reynolds equation for various 2D or 3D roughness patterns on the stationary wall. A ‘unit-based’ approach for incompressible flows has also been employed and is shown to be computationally much less expensive than the full-geometry solution. Results are presented showing the effect of surface roughness on the net lift force. The effects of varying the Reynolds number are demonstrated, as well as comparative results for static stiffness.


1972 ◽  
Vol 39 (2) ◽  
pp. 456-460 ◽  
Author(s):  
P. Ranganath Nayak

A theory of rolling contact is presented which deviates from past theories in two respects: (a) the contacting surfaces are not assumed to be topographically smooth, and (b) Coulomb’s law of friction is replaced by a law describing the behavior of interfacial friction junctions. Numerical results for the slip as a function of the normal and tangential loads are shown to depend on a roughness parameter D, which, in turn, depends on surface topography, the gross geometry of the contacting bodies and on the normal load. It is found that when D is large (i.e., the surfaces are very rough, or the normal load is small), the slip-force relationship differs considerably from that predicted by the smooth-surface (or classical) theory. When D tends to zero, the two theories coincide. The dependence of D on topographical parameters is shown explicitly. Numerical examples indicate that for cylinders of small radius, surface-roughness effects may be important. Their importance decreases as the cylinder radius or the maximum contact pressure is increased, or the surface is made smoother.


Author(s):  
P Sinha ◽  
J S Kennedy ◽  
C M Rodkiewicz ◽  
P Chandra ◽  
R Sharma ◽  
...  

To study the effects of surface roughness and additives in lubrication, a generalized form of Reynolds equation is derived by taking into account the roughness interaction zones adjacent to the moving rough surfaces as sparsely porous matrices and purely hydrodynamic film of micropolar fluid characterizing the lubricant with additives. A particular, one-dimensional form of this equation is used to study these effects on the elastohydrodynamic (EHD) minimum film thickness at the inlet, between two rough rollers. It is shown that for the low permeability of the roughness zone, the EHD film thickness increases as the mean height of the asperities increases, whereas for the high permeability it decreases. The EHD film thickness is also found to increase with the concentration of the additives and the molecular size of the particles. These results are in conformity at least qualitatively, with various experimental and theoretical investigations, cited in the paper.


Author(s):  
R. J. Boyle ◽  
R. G. Senyitko

The aerodynamic performance of a turbine vane was measured in a linear cascade. These measurements were conducted for exit-true chord Reynolds numbers between 150,000 and 1,800,000. The vane surface rms roughness-to-true chord ratio was approximately 2 × 10−4. Measurements were made for exit Mach numbers between 0.3 and 0.9 to achieve different loading distributions. Measurements were made at three different inlet turbulence levels. High and intermediate turbulence levels were generated using two different blown grids. The turbulence was low when no grid was present. The wide range of Reynolds numbers was chosen so that, at the lower Reynolds numbers the rough surfaces would be hydraulically smooth. The primary purpose of the tests was to provide data to verify CFD predictions of surface roughness effects on aerodynamic performance. Data comparisons are made using a two-dimensional Navier-Stokes analysis. Both two-equation and algebraic roughness turbulence models were used. A model is proposed to account for the increase in loss due to roughness as the Reynolds number increases.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


1997 ◽  
Vol 119 (4) ◽  
pp. 776-780 ◽  
Author(s):  
H. Hashimoto

This paper describes an applicability of modified Reynolds equation considering the combined effects of turbulence and surface roughness, which was derived by Hashimoto and Wada (1989), to high-speed journal bearing analysis by comparing the theoretical results with experimental ones. In the numerical analysis of modified Reynolds equation, the nonlinear simultaneous equations for the turbulent correction coefficients are greatly simplified to save computation time with a satisfactory accuracy under the assumption that the shear flow is superior to the pressure flow in the lubricant films. The numerical results of Sommerfeld number and attitude angle are compared with the experimental results to confirm the applicability of the modified Reynolds equation in the case of two types of bearings with different relative roughness heights. Good agreement was obtained between theoretical and experimental results.


2004 ◽  
Vol 126 (1) ◽  
pp. 75-82 ◽  
Author(s):  
C. Guardino ◽  
J. W. Chew ◽  
N. J. Hills

The effects of surface roughness on air-riding seals are investigated here using the Rayleigh pad as an example. Both incompressible and compressible flows are considered using both CFD analysis and analytical/numerical solutions of the Reynolds equation for various two-dimensional or three-dimensional roughness patterns on the stationary wall. A “unit-based” approach for incompressible flows has also been employed and is shown to be computationally much less expensive than the full-geometry solution. Results are presented showing the effect of surface roughness on the net lift force. The effects of varying the Reynolds number are demonstrated, as well as comparative results for static stiffness.


Author(s):  
Ao Hongrui ◽  
Han Zhiying ◽  
Zhang Kai ◽  
Jiang Hongyuan

The reduction of head-media separation (HMS) results in a decreased flying height. Consequently, the contact probability between the slider and the lubricant layer or hard overcoat surface on the disks will increase greatly. Therefore, investigating the contact stress of the disk is vital for improving the reliability of the head disk interface. In this study, a rigid hemisphere sliding over a multilayer thin film half-space is implemented to simulate the contact between the recording slider and the magnetic storage multilayer disk under the quasi-static condition. The effects of different parameters such as normal load, friction coefficient and radius of slider on the von Mises, shear and principal stresses in the multilayer system are analyzed by using finite element method (FEM).


1986 ◽  
Vol 108 (2) ◽  
pp. 171-177 ◽  
Author(s):  
J. W. White ◽  
P. E. Raad ◽  
A. H. Tabrizi ◽  
S. P. Ketkar ◽  
P. P. Prabhu

A wedge bearing with transverse sinusoidal roughness pattern is studied numerically in order to predict the effect of surface roughness on compressible fluid films. A variable grid implicit finite difference scheme is used to provide steady-state solutions of the Reynolds equation over a bearing number range of five orders of magnitude. At a fixed bearing geometry and orientation, the bearing load is found to increase to a maximum as the bearing number increases, then to decrease and asymptotically approach a limiting value as the bearing number increases further. This is quite unlike the behavior of an incompressible fluid bearing. Analysis indicates that the maximum load occurs at a condition where pressure diffusion and Couette effects of the fluid film are of an equal order of magnitude. The increased emphasis of the pressure diffusion physics is due to the short length scales of the rough surfaces which “trigger” the higher derivative diffusion terms in the Reynolds equation. The criterion required for validity of an infinite bearing number solution with a rough surface is found to be much more restrictive than that of a smooth surface bearing. Last, the type of rough surface film clearance averages used in incompressible lubrication are shown to be incorrect for analysis of very thin gas films. It would appear that one application of this information would be the design of an artificially roughened surface for the take-off and landing of magnetic head sliders so as to minimize contact and wear of the magnetic media.


Sign in / Sign up

Export Citation Format

Share Document