A New Slip Theory of Plasticity

1974 ◽  
Vol 41 (3) ◽  
pp. 587-592 ◽  
Author(s):  
T. H. Lin ◽  
Y. M. Ito ◽  
C. L. Yu

A slip theory is presented for the calculation of the incremental stress-strain relations of a face-centered cubic polycrystal such as aluminum and its alloys, from its experimental uniaxial curves. This theory satisfies the conditions of equilibrium, condition of continuity of displacement as well as the slip characteristics of the component crystals. Numerical calculations based on this theory give results which are in good agreement with known experimental data on thin wall cylinders subject to different ratios of incremental axial and torsional loadings after being compressed beyond the elastic range.

2013 ◽  
Vol 46 (1) ◽  
pp. 210-215 ◽  
Author(s):  
V. Tari ◽  
A. D. Rollett ◽  
H. Beladi

A new approach is presented for calculating the parent orientation from sets of variants of orientations produced by phase transformation. The parent austenite orientation is determined using the orientations of bainite variants that transformed from a single parent austenite grain. In this approach, the five known orientation relationships are used to back transform each observed bainite variant to all their potential face-centered-cubic (f.c.c.) parent orientations. A set of potential f.c.c. orientations has one representative from each bainite variant, and each set is assembled on the basis of minimum mutual misorientation. The set of back-transformed orientations with the minimum summation of mutual misorientation angle (SMMA) is selected as the most probable parent (austenite) orientation. The availability of multiple sets permits a confidence index to be calculated from the best and next best fits to a parent orientation. The results show good agreement between the measured parent austenite orientation and the calculated parent orientation having minimum SMMA.


1957 ◽  
Vol 24 (4) ◽  
pp. 585-593
Author(s):  
J. Duffy ◽  
R. D. Mindlin

Abstract A differential stress-strain relation is derived for a medium composed of a face-centered cubic array of elastic spheres in contact. The stress-strain relation is based on the theory of elastic bodies in contact, and includes the effects of both normal and tangential components of contact forces. A description is given of an experiment performed as a test of the contact theories and the differential stress-strain relation derived from them. The experiment consists of a determination of wave velocities and the accompanying rates of energy dissipation in granular bars composed of face-centered cubic arrays of spheres. Experimental results indicate a close agreement between the theoretical and experimental values of wave velocity. However, as in previous experiments with single contacts, the rate of energy dissipation is found to be proportional to the square of the maximum tangential contact force rather than to the cube, as predicted by the theory for small amplitudes.


Author(s):  
In-Hwan Yang ◽  
Mohamed S. El-Genk

Numerical calculations are performed to investigate the effect of viscous dissipation on the temperature rise and friction numbers for laminar water flows in micro-tubes. The calculated values are compared with those determined from reported experimental data for glass and diffused silica micro-tubes (D = 16 – 101 μm and L/D = 625 – 1479). The results confirm a definite slip at the wall with slip lengths of ∼ 0.7 μm and 1.0 μm, which decrease the friction number and the temperature rise in the micro-tubes, but their effect gradually diminishes as either D or L/D increases. The friction number decreases exponentially as D decreases and, to a lesser extent, as L/D increases. The effect of L/D on the friction number is insignificant for micro-tube diameters ≤ 20 μm. For D > 400 μm, the friction number approaches that of Hagen-Posieuille of 64 for macro-tubes when L/D > 1500, but approaches higher values at smaller L/D. The dimensionless analytical expression developed for calculating the friction number and the temperature rise for water flows in micro-tubes is in good agreement with both the numerical and experimental results.


NANO ◽  
2018 ◽  
Vol 13 (03) ◽  
pp. 1850026
Author(s):  
Sergey Shityakov ◽  
Norbert Roewer ◽  
Carola Y. Förster ◽  
Hai T. Tran ◽  
Wenjun Cai ◽  
...  

The purpose of this study is to investigate polycrystalline lattices of aluminum (Al) under the stress–strain conditions in all-atom molecular dynamics simulations and Al alloys using X-ray diffraction. Isothermal uniaxial tension and compression of these polycrystalline lattices showed no dislocation nucleation peaks, which correspond only to the Al monocrystal form. The best tensile and compressive resistance characteristics were observed for a material with the highest grain number ([Formula: see text]) due to the significant reduction of the face-centered cubic lattice in the metal structure. This process is mainly driven by the gradual elevation of the system’s kinetic energy. In the experiment, the amorphous Al alloys with higher manganese composition (20.5%) were investigated, matching the simulated amorphous structures. Overall, the results suggest that the increase in number of grains in Al lattices diminishes the stress–strain impact due to a more disordered atomic-scale (amorphous) metal composition.


1964 ◽  
Vol 20 (1) ◽  
pp. 1-33 ◽  
Author(s):  
J. P. Uldrick ◽  
J. Siekmann

This paper studies the effect of profile thickness on the propulsive forces generated by the swimming of a two-dimensional fish. Comparison of numerical calculations with reported experimental data shows good agreement and demonstrates a decrease of thrust with increasing thickness. Previous two-dimensional linearized theories on fish propulsion dealing with the motion of an infinitesimally thin hydrofoil are included in the present contribution as special cases.


2012 ◽  
Vol 1372 ◽  
Author(s):  
David A. Miranda ◽  
S. A. López-Rivera ◽  
Ch. Power ◽  
J. A. Henao ◽  
M. A. Macías

ABSTRACTPhonons and crystalline structures of Hg1−xCdxSe alloys (0 ≤ x ≤ 0.5) were studied by Raman spectroscopy and X-ray powder diffraction patterns at 298K. The crystalline alloys were prepared by a special combination of synthesis and the Bridgman method. Experimental data showed a face-centered cubic structure, $F\overline 4 \,3\,m$ (No. 216), for all samples, exhibiting a linear dependence for Cd molar fraction, x, for cell parameters, a, and the mass densities, ρ. Phonon frequencies were analyzed using the Romevi-Romevi model for phonons in multicomponent alloys, obtaining a fair agreement with experimental data. Furthermore, an algorithm to implement the Romevi-Romevi model is proposed.


2000 ◽  
Vol 14 (07) ◽  
pp. 761-769 ◽  
Author(s):  
C. RANGANATHAIAH

Positron lifetimes in C 60 and C 70 fullerenes have been measured using Positron Lifetime technique. The analyzed lifetime spectra yields a single lifetime component in agreement with the earlier measurements. XRD measurements have also been used to characterize the fullerene samples. The C 60 and C 70 fullerenes have regular crystallographic face centered cubic structure with lattice constant a = 14.149 Å and 14.903 Å respectively in good agreement with the literature data. The present positron results clearly support the conclusion that positrons do not form positronium in fullerenes.


1959 ◽  
Vol 32 (2) ◽  
pp. 409-419
Author(s):  
Géza Schay ◽  
Péter Ször

Abstract For the stress-strain relation of differently shaped rubber blocks submitted to compression, an equation of general applicability is deduced, starting from the idea that compression work must be done also against the tension arising through the increase of the free surface. In this equation the stress is not a function of the compression ratio only, but of the ratio of the fixed to the free surface as well. Besides the shear modulus of the block's substance, this equation involves a single empirical constant which changes only slightly with the shape of the block's cross section. The validity of the equation obtained was tested by measurements performed by the authors on cylinders as well as by data on quadratic prisms published in previous literature. The calculated values are in good agreement with the experimental data within the limits of experimental error.


Sign in / Sign up

Export Citation Format

Share Document