Flank Wear Model of Cutting Tools Using Control Theory

1978 ◽  
Vol 100 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Y. Koren

A model of the flank wear of cutting tools is developed by using linear control theory. The flank wear is assumed to consist of a mechanically activated and a thermally activated component. The wear process is mathematically treated as a feedback process, whereby the progressive wear raises the cutting forces and temperature thereby increasing the thermally activated wear-rate, and contributes to the mechanically activated wear. A mathematical expression for the flank wear growth is derived and shown to be consistent with experimental results. The experimental data is fitted to the wear model for calculating the mechanical wear coefficient and activation energy for the thermally activated wear. The model yielded a new tool-life equation which is valid over a wider range of speed than Taylor tool-life equation.

2012 ◽  
Vol 729 ◽  
pp. 169-174 ◽  
Author(s):  
Zoltán Pálmai ◽  
Márton Takács ◽  
Balázs Zsolt Farkas

Having reviewed the literature on cutting and based on the optical, electron-optical and morphological examinations of wear processes we have reached the conclusion that it is possible to describe the abrasive, adhesive and thermally activated diffusion, oxidation processes in a single mathematical model. The model is a non-linear autonomous differential equation, which can be solved by simple numerical methods. The complex wear equation was validated by the results of the cutting tests performed with P20 carbide on C45 carbon steel. If we have this data, we can calculate the activation energy of the process determining the nature of the wear process. The apparent activation energy of wear is Q=151,7kJ/mol. The model can even be used with changing technological parameters, and the data necessary for the constants of the wear equation may as well be determined even by measurements performed on the tool during industrial manufacturing. By the mean of this data, we can calculate the activation energy determining the nature of the wear process.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2021 ◽  
pp. 1-49
Author(s):  
Li Xiao ◽  
Yingqiang Xu ◽  
Zhiyong Chen

Abstract In this paper, a multi-layer body model in which material properties and wear coefficient change with node coordinates is proposed, so that the wear profile is not restricted by the singularity of the interface of the coated contact pairs. The conversion rate of the adhered particles was obtained to describe the growth and expansion of the debris at the fretting interface based on experiments, and the wear model of coated contact pair considering the dynamic evolution of the debris layer was established. By comparing the previous experimental and computational results, the wear calculation method proposed in this paper is more reasonable to predict the wear profile of the coated contact pair. In addition, the influence of the debris layer on the wear depth, friction width, and contact pressure in the fretting process is analyzed, indicating that the existence of the debris layer can delay the wear process. Finally, the fretting wear life of the SCMV steel contact pair deposited with the W-DLC coating is estimated.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 447 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Alexander Metel ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  

This paper deals with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating. It has a three-layered architecture with a nano-structured wear-resistant layer. The studies involved the investigation into the microstructure (with the use of SEM and TEM), elemental and phase composition (XRD and SAED patterns), wear process pattern in scratch testing, crystal structure, as well as the microhardness of the coating. Cutting tests of tools with the above coating were carried out in dry turning of steel 1045 at cutting speeds of vc = 200, 250, and 300 m·min−1. The comparison included uncoated tools and tools with the commercial TiN and (Ti,Al)N coatings with the same thickness. The tool with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating showed the longest tool life at all the cutting speeds under consideration. Meanwhile, a tool with the coating under study can be recommended for use in turning constructional steel at the cutting speed of vc = 250 m·min−1. At this cutting speed, a tool shows the combination of a rather long tool life and balanced wear process, without any threat of catastrophic wear.


Author(s):  
Ayyankalai Muthuraja ◽  
Selvaraj Senthilvelan

Tungsten carbide cutting tools with and without solid lubricant (WC-10Co-5CaF2 and WC-10Co) were developed in-house via powder metallurgy. The developed cutting tools and a commercial WC-10Co cutting tool were used to machine cylindrical AISI 1020 steel material under dry conditions. The cutting force and average cutting tool temperature were continuously measured. The cutting tool flank surface and chip morphology after specific tool life (5 min of cutting) were examined to understand tool wear. The flank wear of the considered cutting tools was also measured to quantify the cutting tool life. The surface roughness of the workpiece was measured to determine the machining quality. The developed cutting tool with solid lubricant (WC-10Co-5CaF2) generated 20%–40% less cutting force compared to that of the developed cutting tool without solid lubricant (WC-10Co). In addition, the finish of the workpiece surface improved by 16%–20% when it was machined by the solid lubricant cutting tool. The cutting tool with solid lubricant (WC-10Co-5CaF2) exhibited a 15%–18% reduction in flank wear. Curlier and smaller saw tooth chips were generated from the WC-10Co-5CaF2 cutting tool, confirming that less heat was generated during the cutting process, and the finish of the machined surface was also improved.


Author(s):  
Qi Wang ◽  
Fuji Wang ◽  
Chong Zhang ◽  
Chen Chen

Ti/CFRP stacks present the key function in the aviation field due to their excellent properties. However, both titanium alloy and CFRP are hard-to-cut materials and their requirements on cutting tool performance are significantly different. When drilling Ti/CFRP stacks using a compromised tool, tool wear is affected by two materials, resulting in extremely low tool life. This paper investigates the wear process of chisel edge and main cutting edge of carbide step drill bits in the drilling of Ti/CFRP stacks, titanium alloys and CFRP, and the combined effects of various materials on the tool wear are revealed. Based on the wear analysis, it is found that tool wear is more affected by the carbon fiber/Ti-adhesion interaction which makes the rake face more susceptible to occur adhesive wear and slows down the flank wear, and severe rake wear and flank wear have a sharpening effect on cutting edge. It also reveals the relationship between thrust force and tool wear, and results indicate that the variation of thrust force is related to the flank wear and the Ti-adhesion attached to chisel edge, but not to the edge rounding. The conclusions reported in this paper can provide guidance for structural optimization of long-life stacks cutting tools.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1628
Author(s):  
Mohd Fathullah Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Shayfull Zamree Abd Rahim ◽  
Joanna Gondro ◽  
Paweł Pietrusiewicz ◽  
...  

This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.


2005 ◽  
Vol 127 (2) ◽  
pp. 328-332 ◽  
Author(s):  
A. G. Mamalis ◽  
J. Kundra´k ◽  
M. Horva´th

When using new, very expensive superhard tool materials (diamond or CBN) for precision and ultraprecision machining of parts made, very often, from expensive materials, exact knowledge of the tool wear process (considering, of-course, its stochastic character) is absolutely necessary. It means, that we need new tool-life equations for these new tools. In the present paper, a new tool life relation is proposed based on machining experiments. It reflects the two-extremum form of tool life curves and is valid for a wide range of cutting conditions.


1979 ◽  
Vol 101 (2) ◽  
pp. 109-115 ◽  
Author(s):  
M. M. Tseng ◽  
R. A. Noujaim

More than three hundred flank wear profiles of carbide cutting tools were digitized, stored and analyzed. It was found that different measures of the same wear zone, such as averages or maximums including or excluding the grooves, can significantly change the out-come of tool life studies. For a given test, all the measures used in this study correlate strongly with the true overall wear average during the entire tool life. However, no conversion factor independent of cutting conditions could be found for these measures. Propagation of tool wear profiles was also analyzed. It revealed that aside from the groove zones, the entire flank face shows equal significance in describing tool wear. Thus, when a wear sensor is physically embedded on the flank face for adaptive control purposes, any location between the grooves is as good as any other.


Sign in / Sign up

Export Citation Format

Share Document