scholarly journals Pivoted-Pad Journal Gas Bearing Performance in Exploratory Operation of Brayton Cycle Turbocompressor

1968 ◽  
Vol 90 (4) ◽  
pp. 687-696 ◽  
Author(s):  
R. Y. Wong ◽  
W. L. Stewart ◽  
H. E. Rohlik

This paper describes findings obtained to date in the area of journal gas bearings from an experimental study of a Brayton cycle turbocompressor designed for the requirements of a two-shaft 10-kw space power system. The journal bearing design utilizes three pads pivoted on conforming balls and sockets. Two of the pivots are rigidly mounted to the frame, and the third pivot is mounted to the frame through a low-spring-rate diaphragm. This paper describes the salient package and bearing design features and then presents the principal results obtained from testing the package in both a spin calibration rig and operation at design temperature conditions with an inert gas. The results discussed include (a) the successful use of a pneumatic loading device to vary pad load during operation, (b) the operating characteristics of the bearings as obtained over a range of pad loads and ambient conditions, (c) structural and dynamic behavior of the bearing-support system during design temperature operation and (d) a discussion of the wear characteristics of the conforming ball-and-socket pivot as obtained from the tests made to date.

1992 ◽  
Vol 114 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Michel Fillon ◽  
Jean-Claude Bligoud ◽  
Jean Freˆne

Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.


2006 ◽  
Vol 13 (4-5) ◽  
pp. 285-300 ◽  
Author(s):  
Miguel Angelo de Carvalho Michalski ◽  
Moysés Zindeluk ◽  
Renato de Oliveira Rocha

Journal bearing design and the lubricant characteristics are very influential in a rotating machine behaviour. The bearing geometry can drastically affect the lubricant flow and also the rotor dynamics. Approaching that issue, this paper presents an experimental study of the dynamic behavior of a horizontal rotor suported by journal bearings with semi-circular axial grooves. The journal bearings were manufactured with a varied number of axial grooves and a versatile test rig is used, making possible the analysis of different configurations. The acquired signals are analyzed with classical and non-linear tools and the differences among the rotors’ configurations can be shown.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


2018 ◽  
Vol 70 (4) ◽  
pp. 789-804 ◽  
Author(s):  
M.M. Shahin ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Arefin Kowser ◽  
Uttam Kumar Debnath ◽  
M.H. Monir

Purpose The purposes of the present study are to ensure higher sustainability of journal bearings under different applied loads and to observe bearing performances such as elastic strain, total deformation and stress formation. Design/methodology/approach A journal bearing test rig was used to determine the effect of the applied load on the bearing friction, film thickness, lubricant film pressure, etc. A steady-state analysis was performed to obtain the bearing performance. Findings An efficient aspect ratio (L/D) range was obtained to increase the durability or the stability of the bearing while the bearing is in the working condition by using SAE 5W-30 oil. The results from the study were compared with previous studies in which different types of oil and water, such as Newtonian fluid (NF), magnetorheological fluid (MRF) and nonmagnetorheological fluid (NMRF), were used as the lubricant. To ensure a preferable aspect ratio range (0.25-0.50), a computational fluid dynamics (CFD) analysis was conducted by ANSYS; the results show a lower elastic strain and deformation within the preferable aspect ratio (0.25-0.50) rather than a higher aspect ratio using the SAE 5W-30 oil. Originality/value It is expected that the findings of this study will contribute to the improvement of the bearing design and the bearing lubricating system.


Author(s):  
A.S. FETISOV ◽  
V.O. TYURIN

The article presents the classification of magnetorheological devices. The classification of bearings of rotor machines is given. An experimental stand is described that includes a magnetorheological journal bearing. The information–measuring system of the experimental stand is presented. The results of experimental study is presented.


2018 ◽  
Vol 55 (3) ◽  
pp. 221-229 ◽  
Author(s):  
Kendi YAMAZAKI ◽  
Eduardo Guimarães Hourneaux de MOURA ◽  
Mariana Matera VERAS ◽  
Luiz Henrique MESTIERI ◽  
Paulo SAKAI

ABSTRACT BACKGROUND: Endoscopic submucosal dissection (ESD) is a complex endoscopic procedure, with high rates of adverse events and technical difficulties. To overcome that problem, many training centers published the importance of animal models for skill acquirement in ESD. However, no study has used the submucosal dissection depth (DSUB) as a parameter to evaluate the learning curve in ESD, which might be a relevant factor since an optimal resection plane is important to achieve a curative resection and avoid intraoperative complications. OBJECTIVE: This study aimed to assess ESD skill acquirement after short-term training sessions by evaluating the submucosal dissection depth (DSUB) and the association with adverse events. METHODS: This experimental study included 25 experienced endoscopists in therapeuthic procedures (>5years) and 75 specimens resected by ESD (three resections / endoscopist). Learning parameters (resection time, size, en bloc resection rate, bleeding, perforation and submucosal dissection depth) were prospectively evaluated. The percentages of DSUB of all specimens resected were calculated. RESULTS: All specimens were resected from the gastric body (n=75). The mean size of the resected specimens was 23.97±7.2 mm. The number of adverse events, including bleeding, perforation, and death, were 17 (22.67%), 3 (4%), and 0 cases, respectively. The average mean time by the third dissection decreased from 28.44±9.73 to 18.72±8.81 min (P<0.001). The proportion of DSUB in the bleeding and non-bleeding group were respectively 37.97%±21.13% and 68.66%±23.99%, indicating a significant association between DSUB and bleeding incidence (P<0.001). The ROC curve analysis indicated a cut-off point of 61% (sensitivity, 64%; specificity, 94%) of submucosal dissection depth associated with bleeding. Therefore, when ESD was performed at a depth of >61% of the submucosal layer, the risk for bleeding during the procedure decreased (PPV, 0.97; 95% CI, 0.85-0.99). CONCLUSION: Improvement in the learning curve in ESD and a better cognitive ability were seen by the third dissection in these short term training courses. And a significant association between DSUB and the risk of bleeding.


Sign in / Sign up

Export Citation Format

Share Document