Unsteady Rotating Flow in a Cylinder With a Free Surface

1968 ◽  
Vol 90 (4) ◽  
pp. 445-452 ◽  
Author(s):  
H. Goller ◽  
T. Ranov

The investigation deals with the “spin-up” of the liquid partially filling a right circular cylinder which is impulsively accelerated from rest to a constant angular velocity. By application of certain simplifying assumptions, a simplification of the Navier-Stokes equations is obtained and numerically solved, obtaining the unsteady angular velocity distribution of the liquid and the configuration of the liquid’s free surface, as it approaches, asymptotically with time, a paraboloid. The simplifying assumptions are qualitatively verified by experiment. Measurement of the theoretically predicted free-surface configuration is obtained by an electrohydraulic servosystem designed and developed for the problem. Good agreement between experiment and theory is obtained.

Author(s):  
Iraj Saeedpanah ◽  
M. Shayanfar ◽  
E. Jabbari ◽  
Mohammad Haji Mohammadi

Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in convection terms, the SUPG (streamline upwinding Petrov-Galerkin) method is applied. The solution method is tested for different discharges onto a standard spillway geometries. The results shows good agreement with available experimental data.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


2020 ◽  
Author(s):  
RAJDEEP TAH ◽  
SARBAJIT MAZUMDAR ◽  
Krishna Kant Parida

The shape of the liquid surface for a fluid present in a uniformly rotating cylinder is generally determined by making a Tangential velocity gradient along the radius of the rotating cylindrical container. A very similar principle can be applied if the direction of the produced velocity gradient is reversed, for which the source of rotation will be present at the central axis of the cylindrical vessel in which the liquid is present. Now if the described system is completely closed, the angular velocity will decrease as a function of time. But when the surface of the rotating fluid is kept free, then the Tangential velocity profile would be similar to that of the Taylor-Couette Flow, with a modification that; due to formation of a curvature at the surface, the Navier-Stokes law is to be modified. Now the final equation may not seem to have a proper general solution, but can be approximated to certain solvable expressions for specific cases of angular velocity.


Author(s):  
Djordje Romanic ◽  
Horia Hangan

Analytical and semi-empirical models are inexpensive to run and can complement experimental and numerical simulations for risk analysis-related applications. Some models are developed by employing simplifying assumptions in the Navier-Stokes equations and searching for exact, but many times inviscid solutions occasionally complemented by boundary layer equations to take surface effects into account. Other use simple superposition of generic, canonical flows for which the individual solutions are known. These solutions are then ensembled together by empirical or semi-empirical fitting procedures. Few models address turbulent or fluctuating flow fields, and all models have a series of constants that are fitted against experiments or numerical simulations. This chapter presents the main models used to provide primarily mean flow solutions for tornadoes and downbursts. The models are organized based on the adopted solution techniques, with an emphasis on their assumptions and validity.


2018 ◽  
Vol 65 ◽  
pp. 07001
Author(s):  
Abdul Haslim Abdul Shukor Lim ◽  
Zulhilmi Ismai ◽  
Mohamad Hidayat Jama ◽  
Md. Ridzuan Makhtar

Capabilities of numerical tools to simulate fluid problems significantly depend on its methods to solve for the Navier-Stokes equations. Different dimensional computing tools using the same horizontal meshes were used to simulate flow conditions inside non- and vegetation meandering compound channel. Both tools give good agreement for simulations of depth-averaged streamwise velocity inside the main channel, but its capabilities vary significantly for simulations on floodplains. Lower relative depth recorded a higher percentage of errors than flow with higher relative depth. Vegetation along the main channel increased the flows complexity especially in the area near the vegetation thus reducing the simulation capabilities of the computing tools. Simulations work by TELEMAC-3D significantly better in the areas with highly dimensional and turbulence conditions. TELEMAC-2D is still useful because of its simplicity and lower computing time and resources required.


Sign in / Sign up

Export Citation Format

Share Document