On the Meaning of Isoclinic Parameters in the Plastic State in Cellulose Nitrate

1962 ◽  
Vol 29 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Frocht ◽  
Y. F. Cheng

In applying the shear-difference method to the determination of stress distributions in photo plasticity, a basic question arises whether, under plastic flow, the isoclinic parameters represent the directions of the secondary principal stresses. Special equipment, new techniques, and a series of experiments are described to study this problem. Tests were made with stress systems which varied in magnitude and direction at normal and oblique incidence, and at strains for which a one-to-one stress-optic relation exists as well as at strains for which it breaks down. Typical results are given. These findings together with the method of scattered light and an appropriate stress-optic law may provide a foundation for three-dimensional photoplasticity. The effects described are limited to loading. Cases of loading plus unloading are not considered in the present paper.

Author(s):  
Toshiyuki Sawa ◽  
Masahiro Sasaki ◽  
Yuya Hirayama

Scarf adhesive joints used in practice. However, the stress distributions and the joints strengths have not yet been fully elucidate. Important issues are how to determine the scarf angle in adherend and how to determine the adhesive properties. In this study, the stress distributions in scarf adhesive joints under static tensile loadings are analyzed using three-dimensional finite-element calculations. In the FEM calculations, the effects of Young's modulus of the adhesive, adhesive thickness, scarf angle of the adherend on the stress distributions at the adhesive interfaces are examined. The maximum principal stresses were calculated at every element at the interfaces. As the results, it is found that the maximum value of the maximum principal stress occurs at the edge of the adhesive interfaces (z=0, 1/s=1). It is also observed that the maximum value of the stress is the smallest, when the scarf angle is 60 degree. In addition, the joint strength is estimated using the interface stress. For the verification of the FEM calculations, the experiments were carried out to measure the strengths and the strains in the joints under static tensile loadings using strain gauges. Fairly good agreements are observed between the numerical and the measured results concerning the joint strength and the strains.


1940 ◽  
Vol 44 (349) ◽  
pp. 74-88 ◽  
Author(s):  
R. Weller ◽  
J. K. Bussey

SummaryA method has been developed for making photoelastic analyses of threedimensional stress systems by utilising the polarisation phenomena associated with the scattering of light. By this method, the maximum shear and the directions of the three principal stresses at any point within a model can be determined, and the two principal stresses at a free-bounding surface can be separately evaluated. Polarised light is projected into the model through a slit so that it illuminates a plane section. The light is continuously analysed along its path by scattering and the state of stress in the illuminated section is obtained. By means of a series of such sections, the entire stress field may be explored. The method was used to analyse the stress system of a simple beam in bending. The results were found to be in good agreement with those expected from elementary theory.


1955 ◽  
Vol 22 (2) ◽  
pp. 273-275
Author(s):  
G. A. Zizicas

Abstract O. Mohr has developed a diagram representing the normal stress component snn = σn and the total shearing stress component τn on an element of surface of any prescribed orientation with respect to the directions of the principal stresses. His procedure, however, does not give the orientation of the shearing stress τn within the element or, which is equivalent, the components of this shearing stress in a plane co-ordinate system within the element under consideration. An extension of the Mohr method that overcomes this limitation is presented in this note.


Author(s):  
Toshiyuki Sawa ◽  
Ryo Nogaito

Stress distributions in adhesive-rivets combination joints under tensile shear loadings are analyzed using a three-dimensional finite element method. The effects of the adherend thickness, the number of rivets and the rivet locations on the stress distributions at the interfaces are examined. Experiments to measure the rupture loads of the joints were carried out. As the results, it was found that the peel stress near the edges of the interfaces decreased as the adherend thickness increased. The maximum value of the maximum principal stresses near the edges of the interfaces decreased as the interval between the two rivets in the longitudinal direction decreased in the case where two rivets were combined. However, small effect of the interval between the two rivets in the lateral direction was found in the case of two rivets. The maximum value of the maximum principal stresses near the edges of the interfaces decreased as the interval between the four rivets in the longitudinal direction decreased and that in the lateral direction increased in the case where four rivets were combined. Discussion on the rupture loads of adhesive-rivets combination joints was made. The rupture loads of the joints increased as the number of rivets increased. The rupture loads of the adhesive-rivets combination joints could be increased more than those of only-riveted joints in the case of two rivets. The rupture loads of adhesive-rivets combination joints were found to be almost the same as those of only-riveted joints in the case of four rivets.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2001 ◽  
Vol 10 (3) ◽  
pp. 312-330 ◽  
Author(s):  
Bernard Harper ◽  
Richard Latto

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.


Author(s):  
M Taylor ◽  
E W Abel

The difficulty of achieving good distal contact between a cementless hip endoprosthesis and the femur is well established. This finite element study investigates the effect on the stress distribution within the femur due to varying lengths of distal gap. Three-dimensional anatomical models of two different sized femurs were generated, based upon computer tomograph scans of two cadaveric specimens. A further six models were derived from each original model, with distal gaps varying from 10 to 60 mm in length. The resulting stress distributions within these were compared to the uniform contact models. The extent to which femoral geometry was an influencing factor on the stress distribution within the bone was also studied. Lack of distal contact with the prosthesis was found not to affect the proximal stress distribution within the femur, for distal gap lengths of up to 60 mm. In the region of no distal contact, the stress within the femur was at normal physiological levels associated with the applied loading and boundary conditions. The femoral geometry was found to have little influence on the stress distribution within the cortical bone. Although localized variations were noted, both femurs exhibited the same general stress distribution pattern.


2011 ◽  
Vol 312-315 ◽  
pp. 971-976 ◽  
Author(s):  
J. Barbosa da Silva ◽  
G. Silva Almeida ◽  
W.C.P. Barbosa de Lima ◽  
Gelmires Araújo Neves ◽  
Antônio Gilson Barbosa de Lima

The Aim of this Work Is to Present a Three-Dimensional Mathematical Modelling to Predict Heat and Mass Transport inside the Industrial Brick with Rectangular Holes during the Drying Including Shrinkage and Hygrothermalelastic Stress Analysis. the Numerical Solution of the Diffusion Equation, Being Used the Finite-Volume Method, Considering Constant Thermo-Physical Properties and Convective Boundary Conditions at the Surface of the Solid, it Is Presented and Analyzed. Results of the Temperature, Moisture Content and Stress Distributions, and Drying and Heating Kinetics Are Shown and Analyzed. Results of the Average Moisture Content and Surface Temperature of the Brick along the Drying Process Are Compared with Experimental Data (T = 80.0oC and RH = 4.6 %) and Good Agreement Was Obtained. it Was Verified that the Largest Temperature, Moisture Content and Stress Gradients Are Located in the Intern and External Vertexes of the Brick.


Sign in / Sign up

Export Citation Format

Share Document