Criticism of Radioactive Tool-Life Testing

1963 ◽  
Vol 85 (4) ◽  
pp. 381-385 ◽  
Author(s):  
N. H. Cook ◽  
A. B. Lang

Tungsten carbide and high-speed-steel lathe tool wear tests, carried out by conventional means and by radioisotope techniques, are compared. When the irradiated tool is used to cut under only one set of conditions, good correlation is obtained between the two methods. When the irradiated tool is used under a variety of cutting conditions, correlation is poor. If a single tool is used under different cutting conditions, it is doubtful if differences of less than 2:1 are significant.

2012 ◽  
Vol 566 ◽  
pp. 217-221 ◽  
Author(s):  
Ali Davoudinejad ◽  
Sina Alizadeh Ashrafi ◽  
Raja Ishak Raja Hamzah ◽  
Abdolkarim Niazi

Aluminum alloy is widely used in industry and various researches has been done on machiability of this material mainly due to its low weight and other superior properties. Dry machining is still interesting topic to reduce the cost of manufacturing and environmental contaminations. In present study dry machining of Al 2024 investigated on tool life, tool wear mechanisms, hole quality, thrust force and torque. Different types of high speed steel (HSS) tools utilized at constant feed rate of 0.04 mm/rev and cutting speeds within the range of 28 and 94 m/min. Experimental results revealed that HSCo drills, performed better than HSS drills in terms of tool life and hole quality. The main wear mechanisms which analyzed by scanning electron microscope found abrasive and adhesion wear on flank face, besides, BUE observed at chisel and cutting edges. However tool wear and BUE formation found more significant at high cutting speed. In terms of thrust force, two facet HSCo tools, recorded higher thrust force than four facet HSS drills.


The machinability of a material can be defined in terms of the wear rate of the cutting tool used to machine the material. The lower the tool wear rate or the greater the tool life the better the machinability. The wear processes of cutting tools are complicated, but recent work has shown that cutting tool wear rates during machining can be directly related to tool material wear rates when rubbing in a modified crossed cylinder wear experiment (Mills & Akhtar 1975). The wear of cutting tools can be simulated by simple experiments. Here I present results on the effect of total residual levels in leaded low carbon free machining steels on the tool life of M2 high speed steel. The results will be discussed in terms of a simple wear model.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Fritz Klocke ◽  
Kristian Arntz ◽  
Gustavo Francisco Cabral ◽  
Martin Stolorz ◽  
Marc Busch

In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC) and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC). The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill ( = 6, TiAlN coating). It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1628
Author(s):  
Mohd Fathullah Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Shayfull Zamree Abd Rahim ◽  
Joanna Gondro ◽  
Paweł Pietrusiewicz ◽  
...  

This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.


Author(s):  
S I Jaffery ◽  
P T Mativenga

The method of using wear maps in assessing tool wear over a range of cutting conditions was presented by Lim et al. in 1993 for turning steel using high-speed steel (HSS) tools. Since then this approach has rarely been studied or critically reviewed. The use of reliable wear maps can aid in assessing the wear rate and wear mechanism of cutting tools over a feed rate to cutting velocity plane. The focus of this paper is on improving the integrity of such wear maps. Unified cutting tests were undertaken to explore the effect of two different grades of carbide tooling on wear performance within a range of recommended cutting conditions. The methodology for developing such maps, as well as the underlying assumptions, was critically reviewed in light of two new wear maps created for different carbide grades. Additionally, by utilising energy dispersive X-ray (EDX) analysis and wear patterns, the paper presents new evidence in support of mechanisms responsible for the safety zone. Understanding the wear mechanisms in the low tool wear zone is important for developing extended life tooling.


2012 ◽  
Vol 251 ◽  
pp. 402-405
Author(s):  
Hui Wang ◽  
Feng Zhou ◽  
Rong Di Han ◽  
Yong Hong Liu

After tool edges sharpen, there are a variety of micro-defects in the area of edge, which will accelerate tool wear and shorten tool life. In order to increase tool life and production efficiency, the area of edge strengthen was needed. In this paper, the electrolysis technology was used to enhance the cutting edge of high-speed steel(HSS) tap, the rounding of the edge region of the forming edge and surface morphology of cutting edge were investigated. And the tapping tests were carried on the Ti6Al4V. The results showed that electrolysis enhanced technology can eliminate the defects, invert a circular edge and improve the tool edge strength. The original tap was worn rapidly in the early stages of wear and the cutting force was changed big variation. The results showed that tap strengthened can reduce tool wear and improve tool life.


Alloy Digest ◽  
2002 ◽  
Vol 51 (5) ◽  

Abstract NIROSTA 4305 is an austenitic alloy with a high sulfur content. The alloy is typically used for machined parts. As with other austenitic steels, it is necessary to machine with good-quality high-speed steel or tungsten carbide tools. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-854. Producer or source: ThyssenKrupp Nirosta GmbH.


2020 ◽  
pp. 74-78
Author(s):  
A.E. Dreval

The assessment of the limiting state of high-speed machine-manual taps in the processing of structural steel billets is considered. A general multi-parameter dependence is developed for calculating the criterion of allowable wear, which makes it possible to rationally use the tool life and normalize the cut amount during regrinding. Keywords thread cutting, tap, angle of the cutting part, criterion, high-speed steel, wear, failure, life, service life. [email protected]


Tribology ◽  
2005 ◽  
Author(s):  
Alexander Bardetsky ◽  
Helmi Attia ◽  
Mohamed Elbestawi

Experimental study has been carried out to establish the effect of cutting conditions (speed, feed, and depth of cut) on the cutting forces and time variation of carbide tool wear data in high-speed machining (face milling) of Al-Si cast alloys that are commonly used in the automotive industry. The experimental setup and force measurement system are described. The test results are used to calibrate and validate the fracture mechanics-based tool wear model developed in Part 1 of this work. The model calibration is conducted for two combinations of cutting speed and a feed rate, which represent a lower and upper limit of the range of cutting conditions. The calibrated model is then validated for a wide range of cutting conditions. This validation is performed by comparing the experimental tool wear data with the tool wear predicted by calibrated cutting tool wear model. The prediction errors were found to be less then 7%, demonstrating the accuracy of the object oriented finite element (OOFE) modeling of the crack propagation process in the cobalt binder. It also demonstrates its capability in capturing the physics of the wear process. This is attributed to the fact that the OOF model incorporates the real microstructure of the tool material.


1985 ◽  
Vol 107 (4) ◽  
pp. 325-335 ◽  
Author(s):  
R. Komanduri ◽  
D. G. Flom ◽  
M. Lee

Results of a four-year Advanced Machining Research Program (AMRP) to provide a science base for faster metal removal through high-speed machining (HSM), high-throughput machining (HTM) and laser-assisted machining (LAM) are presented. Emphasis was placed on turning and milling of aluminum-, nickel-base-, titanium-, and ferrous alloys. Experimental cutting speeds ranged from 0.0013 smm (0.004 sfpm) to 24,500 smm (80,000 sfpm). Chip formation in HSM is found to be associated with the formation of either a continuous, ribbon-like chip or a segmental (or shear-localized) chip. The former is favored by good thermal properties, low hardness, and fcc/bcc crystal structures, e.g., aluminum alloys and soft carbon steels, while the latter is favored by poor thermal properties, hcp structure, and high hardness, e.g., titanium alloys, nickel base superalloys, and hardened alloy steels. Mathematical models were developed to describe the primary features of chip formation in HSM. At ultra-high speed machining (UHSM) speeds, chip type does not change with speed nor does tool wear. However, at even moderately high speeds, tool wear is still the limiting factor when machining titanium alloys, superalloys, and special steels. Tool life and productivity can be increased significantly for special applications using two novel cutting tool concepts – ledge and rotary. With ledge inserts, titanium alloys can be machined (turning and face milling) five times faster than conventional, with long tool life (~ 30 min) and cost savings up to 78 percent. A stiffened rotary tool has yielded a tool life improvement of twenty times in turning Inconel 718 and about six times when machining titanium 6A1-4V. Significantly increased metal removal rates (up to 50 in.3/min on Inconel 718 and Ti 6A1-4V) have been achieved on a rigid, high-power precision lathe. Continuous wave CO2 LAM, though conceptually feasible, limits the opportunities to manufacture DOD components due to poor adsorption (~ 10 percent) together with high capital equipment and operating costs. Pulse LAM shows greater promise, especially if new laser source concepts such as face pump lasers are considered. Economic modeling has enabled assessment of HSM and LAM developments. Aluminum HSM has been demonstrated in a production environment and substantial payoffs are indicated in airframe applications.


Sign in / Sign up

Export Citation Format

Share Document