Design, Development, Testing and Qualification of Diverse Safety Rod and Its Drive Mechanism for a Prototype Fast Breeder Reactor

Author(s):  
R. Vijayashree ◽  
R. Veerasamy ◽  
Sudheer Patri ◽  
P. Chellapandi ◽  
G. Vaidyanathan ◽  
...  

Prototype fast breeder reactor is U–PuO2 fueled sodium cooled pool type fast reactor and it is currently under construction at Kalpakkam, India. Prototype fast breeder reactor is equipped with two independent fast acting and diverse shutdown systems. A shutdown system comprises of sensors, logic circuits, drive mechanisms, and neutron absorbing rods. The two shutdown systems of prototype fast breeder reactor are capable of bringing down the reactor to cold shutdown state independent of the other. The absorber rods of the second shutdown system of prototype fast breeder reactor are called as diverse safety rods (DSRs) and their drive mechanisms are called as diverse safety rod drive mechanisms (DSRDMs). DSRs are normally parked above active core by DSRDMs. On receiving scram signal, the electromagnet of DSRDM is de-energized and it facilitates fast shutdown of the reactor by dropping the DSR into the active core. For the development of prototypes of DSR and DSRDM, three phases of testing, namely, individual component testing, integrated functional testing in room temperature, and endurance testing at high temperature sodium, were done. The electromagnet of DSRDM has been separately tested at room temperature, in furnace, and in sodium. Specimens simulating the contact conditions between electromagnet and armature of DSR have been tested to rule out self-welding possibility. The prototype of DSR has been tested in flowing water to determine the pressure drop and drop time. The functional testing of the integrated prototype DSRDM and DSR in aligned and misaligned conditions in air/water has been completed. The performance testing of the integrated system in sodium has been done in three campaigns. During the third campaign of sodium testing, the performance of the system has been verified with 30 mm misalignment at various temperatures. The third campaign has qualified the system for 10 years of operation in reactor. This paper presents design, development, testing, and qualification of the prototype DSR and DSRDM. Salient design specifications for both DSRDM and DSR are listed initially. The conceptual and detailed design features are explained with the help of figures. Details on material of construction are given at appropriate places. Test plans and criteria for endurance testing in sodium for qualification of DSRDM and DSR for operation in reactor are briefed. Brief explanation of test setups and typical test results are also given.

Author(s):  
R. Vijayashree ◽  
R. Veerasamy ◽  
Sudheer Patri ◽  
S. Suresh Kumar ◽  
S. C. S. P. Kumar Krovvidi ◽  
...  

PFBR, India’s first commercial fast breeder reactor employing fast fission is a challenging project from technological point of view to meet the energy security of the country. It is currently under advanced stage of construction at Kalpakkam, India. PFBR is equipped with two independent, fast acting and diverse shutdown systems. A shutdown system comprises of sensors, logic circuits, drive mechanisms and neutron absorbing rods. The absorber rods of the second shutdown system of PFBR are called as Diverse Safety rods (DSR) and their drive mechanisms are called as Diverse Safety Rod Drive Mechanisms (DSRDM). DSR are normally parked above active core by DSRDM. On receiving scram signal, Electromagnet of DSRDM is de-energised and it facilitates fast shutdown of the reactor by dropping the DSR in to the active core. For the prototype development of DSR and DSRDM, three phases of testing namely individual component testing, integrated functional testing in room temperature and endurance testing at high temperature sodium were planned and are being done. The electromagnet of DSRDM operates at high temperature sodium environment continuously. It has been separately tested at room temperature, in furnace and in sodium. Specimens simulating the contact conditions between Electromagnet and armature of DSR have been tested to rule out self welding possibility. The Dashpot provided to decelerate the DSR at the end of its free fall has been initially tested in water and then in sodium. The prototype of DSR has been tested in flowing water to determine the pressure drop and drop time. The functional testing of the integrated prototype DSRDM and DSR in aligned and misaligned conditions in air/water has been completed. The performance testing of the integrated system in sodium has been done in three campaigns. Based on the performance testing in the first two campaigns of sodium testing, design modifications and manufacturing quality improvement were done. Methods of drop time measurement based on ultrasonics and acoustics were also developed along with the first two campaigns. During the third campaign of sodium testing, the performance of the system has been verified with 30 mm misalignment at various temperatures. The third campaign has qualified the system for 10 years of operation in reactor. This paper describes the test setup for all the above mentioned testing and also gives typical test results.


1995 ◽  
Vol 48 (5) ◽  
pp. 929 ◽  
Author(s):  
E Krausz ◽  
H Riesen ◽  
AD Rae

[Zn( bpy )3] (ClO4)2 and [ Ru ( bpy )3] (ClO4)2 are isomorphous in both their racemic and resolved crystal forms. The resolved materials are monohydrates and have a C 2, Z = 8, structure with two independent formula units on general sites in the asymmetric unit. The cations have the same chirality. The inherent threefold axis of each cation lies approximately parallel to the c axis. The unrelated racemic form has a C2/c, Z = 4, structure which is a commensurate modulation of a P3c1, Z = 2, parent structure, typified by the room-temperature structure of [ Ru ( bpy )3] (PF6)2. A primary, secondary and tertiary axis of P3c1 become the c, b and a axes respectively of C2/c, retaining a third of the symmetry elements of P3c1. The crystals grow as multiply contacted twins. This structure bas just one spectroscopic site with the cation lying on a twofold axis that passes through the metal and one of the bidendate ligands and relates the other two ligands to each other. This feature is particularly useful in the study of the optical spectroscopy of the metal-to- ligand charge transfer excitations of [ Ru ( bpy )3]2+ and related systems. A comparison of structural and spectral data indicates that the positions of the anions have a dominant influence on the relative energies of the metal-to- ligand excitations. An energy difference between excitations involving the two (lower-energy) equivalent ligands and the third ligand of the order of 800 cm-1 is indicated in both singlet and triplet regions for the racemic perchlorate. The absorption spectra of [ Ru ( bpy )3]2+and [Os( bpy )3]2+ in a number of crystalline hosts are compared and discussed.


1993 ◽  
Author(s):  
J. H. Selverian ◽  
Dave A. ONeil ◽  
Shinhoo Kang

Brazed joints were made between silicon nitride and Ni-based and Fe-based super alloys. Room temperature shear (torsion) strengths ranged from 75–242 MPa for Si3N4-to-Incoloy 909 joints and from 30–127 MPa for the Si3N4-to-Inconel 718 joints. At 500 °C the joint strength was 120 MPa while at 650°C and 950°C the joints strengths were less than 20 MPa. These low strengths at 650°C and 950°C were attributed to a reduction in the shrink-fit and to low braze strength at these high temperatures. Finite element analysis (FEA) and a probabilistic failure theory (CARES) were used to predict the joint strengths. The predicted joint strengths agreed well with measured joint strengths in torsional loading at 20°C. Torsion tests were also performed at 650°C. Aspects of the material systems, residual stresses, mechanical behavior, and strength predictions are presented. Two new braze alloys based on the Au-Ni-Cr-Fe system were used to overcome the poor high temperature strength. Joints made with these brazes had good strength (85 MPa and 35 N-m) at 650°C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishchay A. Isaac ◽  
Johannes Reiprich ◽  
Leslie Schlag ◽  
Pedro H. O. Moreira ◽  
Mostafa Baloochi ◽  
...  

AbstractThis study demonstrates the fabrication of self-aligning three-dimensional (3D) platinum bridges for ammonia gas sensing using gas-phase electrodeposition. This deposition scheme can guide charged nanoparticles to predetermined locations on a surface with sub-micrometer resolution. A shutter-free deposition is possible, preventing the use of additional steps for lift-off and improving material yield. This method uses a spark discharge-based platinum nanoparticle source in combination with sequentially biased surface electrodes and charged photoresist patterns on a glass substrate. In this way, the parallel growth of multiple sensing nodes, in this case 3D self-aligning nanoparticle-based bridges, is accomplished. An array containing 360 locally grown bridges made out of 5 nm platinum nanoparticles is fabricated. The high surface-to-volume ratio of the 3D bridge morphology enables fast response and room temperature operated sensing capabilities. The bridges are preconditioned for ~ 24 h in nitrogen gas before being used for performance testing, ensuring drift-free sensor performance. In this study, platinum bridges are demonstrated to detect ammonia (NH3) with concentrations between 1400 and 100 ppm. The sensing mechanism, response times, cross-sensitivity, selectivity, and sensor stability are discussed. The device showed a sensor response of ~ 4% at 100 ppm NH3 with a 70% response time of 8 min at room temperature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hala Messai ◽  
Salim Meziani ◽  
Athmane Fouathia

Purpose The purpose of this paper is to highlight the performance of the Chaboche model in relation to the database identification, tests with imposed deformations were conducted at room temperature on 304L stainless steel specimens. Design/methodology/approach The first two tests were performed in tension-compression between ±0.005 and ±0.01; in the third test, each cycle is composed of the combination of a compression tensile cycle between ±0.01 followed by a torsion cycle between ±0.01723 (non-proportional path), and the last, uniaxial ratcheting test with a mean stress between 250 MPa and −150 MPa. Several identifications of a Chaboche-type model were then performed by considering databases composed of one or more of the cited tests. On the basis of these identifications, the simulations of a large number of ratchet tests in particular were carried out. Findings The results present the effect of the optimized parameters on the prediction of the behavior of materials which is reported in the graphs, Optimizations 1 and 2 of first and second tests and Optimization 4 of the third test giving a good prediction of the increasing/decreasing pre-deformation amplitude. Originality/value The quality of the model's predictions strongly depends on the richness of the database used for the identification of the parameters.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2368 ◽  
Author(s):  
Maria Lorusso ◽  
Marisa Giorgetti ◽  
Simona Travellini ◽  
Luca Greci ◽  
Andrea Zangiacomi ◽  
...  

The use of technology for educational purposes is a consolidated reality, and many new tools are constantly being devised and offered for use with both normally developing children and children with special needs. Nonetheless, a detailed analysis of the processes being stimulated and of the goals being pursued is often lacking or absent. In this work we describe the design, development and preliminary testing of an integrated system which combines the use of smart devices, a physical cube, augmented reality (AR) technology, a smart TV, and a software application especially designed to stimulate cognitive and social functions in pre-school children. The system was tested with three groups of children (25 children in total) during kindergarten activities. The results show that the system is easy to understand, elicits high levels of participation and social interaction, favors strategic behaviors, and can be used by the children with limited need of instruction and support by the adult. The implications for empowerment in typically developing children and the possibilities for use with children who have specific impairments in social communication are discussed.


Projections ◽  
2018 ◽  
Vol 12 (2) ◽  
pp. 76-85 ◽  
Author(s):  
Rainer Reisenzein

Murray Smith’s proposal in Film, Art, and the Third Culture for a naturalized aesthetics is of interest to both film theorists and psychologists: for the former, it helps to elucidate how films work; for the latter, it provides concrete application cases of psychological theories. However, there are reasons for believing that the theory of emotions that Smith has adopted from psychology to ground his case studies—an extended version of basic emotions theory—is less well supported than he suggests. The available empirical evidence seems more compatible with the assumption that the different emotions are outputs of a single, integrated system.


1993 ◽  
Vol 8 (9) ◽  
pp. 2288-2298 ◽  
Author(s):  
H. Pillière ◽  
M. Goldmann ◽  
F. Béguin

Isotherms (at 300 K and 328 K) and isobars (in the range 300 to 400 K) of n-pentane intercalation in CsC24 and CsC36 were established. With CsC24, three plateaus were identified at 0.52, 0.7, and 1.0 n-pentane/24 C, whereas only two plateaus at 0.8 and 0.97 n-pentane/36 C were found with CsC36. The progress of the reaction between n-pentane and CsC24, CsC36, and CsC56 (stage 2 to 4) was monitored by real-time neutron diffraction. The intercalation of n-pentane in CsC24 results in the simultaneous formation of a second stage ternary and a first stage binary “CsC8”, whereas, from the third stage CsC36 or the fourth stage CsC56, only pure second stage or third stage ternary compounds are formed, respectively. Owing to the formation of binary domains rich in alkali metal (CsC8) or to stage lowering produced by the ternarization, the in-plane cesium density is smaller in the ternary layer than in the starting binary. The electrostatic repulsion between the cesium ions, provoked by the sorption of n-pentane, is believed to be at the origin of the increased coverage. During the intercalation or de-intercalation processes, three-dimensional segregation occurs in each grain. A pleated layer model with canted fronts is presented. It accounts for the various phases present within each grain and for the structural transformations caused by pressure variations. At room temperature, the ternary layer seems to be disordered. The order-disorder transition appearing either by decreasing the temperature or by increasing the n-pentane pressure is correlated to a hindered motion of the intercalated molecules.


1974 ◽  
Vol 64 ◽  
pp. 40-51 ◽  
Author(s):  
S. P. Boughn ◽  
W. M. Fairbank ◽  
M. S. McASHAN ◽  
H. J. Paik ◽  
R. C. Taber ◽  
...  

Cryogenic detectors for gravitational wave astronomy promise greatly improved sensitivity over room temperature detectors. The 3 mK detector which we have under construction should give an improvement of 106 over existing detectors. The cryogenic antennae are described and the calculated low temperature performance is detailed. New superconducting instrumentation is described.


1994 ◽  
Vol 19 (1) ◽  
pp. 369-369
Author(s):  
R. L. Horsburgh ◽  
J. R. Warren

Abstract A large commercial apple grower reported failure in attempts to control TABM with airblast applications of Penncap M (2 pt/acre) combined with methomyl (3 pt/acre). At the time of the grower applications larval hatch had begun and most larvae were in the first or second instar. By the time larvae were entering the third instar (10 days after spray application) it was apparent that commercially acceptable control had not been achieved. In 1992 this grower also had poor control when Penncap M was applied to suppress redbanded leafroller and experiments showed that tolerance of Penncap M was present in the resident RBLR population (Horsburgh et al. 1992). This laboratory bioassay was begun on 3 Sep to determine tolerance of the TABM population to Penncap M and other insecticides. Seven treatments (including a water control) were selected and rates calculated on the basis of 300 gal of spray being applied per acre. The appropriate dosage of pesticide for each treatment was mixed with 1 gallon of 77°F water in clean 1 gallon battery jars. Twenty plastic petri dishes containing moistened filter paper were prepared and served as individual cages for twenty 3rd instars per treatment. The larvae, on single leaves, were immersed in the appropriate solutions for five seconds and the leaf placed on the moist filter paper. The petri dish cover was put in place and the cages held at room temperature (80°F) for the duration of the test. All larvae were examined at 24 hour intervals and mortality was recorded. Death of larvae was assumed when no movement was observed when the larvae were gently prodded with a blunt steel probe.


Sign in / Sign up

Export Citation Format

Share Document