Spark Advance Real-Time Optimization Based on Combustion Analysis

Author(s):  
Enrico Corti ◽  
Claudio Forte

One of the most effective factors influencing performance, efficiency, and pollutant emissions of internal combustion engines is the combustion phasing: In gasoline engines, electronic control units (ECUs) manage the spark advance (SA) in order to set the optimal combustion phase. SA is usually optimized on the test bench by changing the ignition angle while monitoring brake mean effective pressure (BMEP) and indicated mean effective pressure (IMEP) and brake specific fuel consumption (BSFC). The optimization process relates BMEP, IMEP, and BSFC mean values with the control setting (SA). However, the effect of SA on combustion is not deterministic due to the cycle-to-cycle variation: The analysis of mean values requires many engine cycles to be significant in the performance obtained with the given control setting. This paper presents a novel approach to SA optimization, with the objective of improving the performance analysis robustness while reducing the test time. For a given running condition, IMEP can be considered a function of the combustion phase, represented by the 50% mass fraction burned (50% MFB). Due to cycle-to-cycle variation, different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA, but these values are related by means of a unique relationship. The distribution on the plane IMEP-MFB50 forms a parabola; therefore, the optimization could be carried out by choosing SA values maintaining the scatter around the vertex. Unfortunately, the distribution shape is slightly influenced by heat losses: This effect must be taken into account in order to avoid overadvanced calibrations. SA is then controlled by means of a proportional-integer-derivative controller, fed by an error that is defined based on previous considerations: A contribution is related to the MFB50-IMEP distribution, and a second contribution is related to the net cumulative heat release-IMEP distribution. The latter is able to take into account for heat losses. First, the methodology has been tested on in-cylinder pressure data, collected from different SI engines; then, it has been implemented in real-time by means of a programmable combustion analyzer: The system performs a cycle-to-cycle combustion analysis, evaluating the combustion parameters necessary to calculate the target SA, which is then actuated by the ECU. The approach proved to be efficient, reducing the number of engine cycles necessary for the calibration to less than 1000 per operating condition.

Author(s):  
Enrico Corti ◽  
Claudio Forte

Future emission regulations could force manufacturers to install in-cylinder pressure sensors on production engines. The availability of such a signal opens a new scenario in terms of combustion control: many settings that previously were optimized off-line, can now be monitored and calibrated in realtime. One of the most effective factors influencing performance and efficiency is the combustion phasing: in gasoline engines Electronic Control Units (ECU) manage the Spark Advance (SA) in order to set the optimal combustion phase. SA optimal values are usually determined by means of calibration procedures carried out on the test bench by changing the ignition angle while monitoring Brake and Indicated Mean Effective Pressure (BMEP, IMEP) and Brake Specific Fuel Consumption (BSFC). The optimization process relates BMEP, IMEP and BSFC mean values with the control setting (SA). However, the effect of SA on combustion is not deterministic, due to the cycle-to-cycle variation: the analysis of mean values requires many engine cycles to be significant of the performance obtained with the given control setting. This paper presents a novel approach to SA optimization, with the objective of improving the performance analysis robustness, while reducing the test time. The approach can be either used in the calibration phase or in on-board applications, if the in-cylinder pressure signal is available: this would allow maintaining the optimization active throughout the entire engine life. The methodology is based on the observation that, for a given running condition, IMEP can be considered a function of a single combustion parameter, represented by the 50% Mass Fraction Burned (50%MFB). Due to cycle-to-cycle variation, many different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA, but these values are related by means of a unique relationship. The distribution on the plane IMEP-MFB50 forms a parabola, therefore the optimization could be carried out by choosing SA values maintaining the scatter around the vertex. Unfortunately the distribution shape is slightly influenced by heat losses (i.e., by SA): this effect must be taken into account in order to avoid over-advanced calibrations. SA is then controlled by means of a PID (Proportional Integer Derivative) controller, fed by an error that is defined based on the previous considerations: a contribution is related to the MFB50-IMEP distribution, and a second contribution is related to the net Cumulative Heat Release (CHRNET)-IMEP distribution. The latter is able to take into account for heat losses. Firstly, the methodology has been tested on in-cylinder pressure data, collected from different SI engines; then, it has been implemented in real-time, by means of a programmable combustion analyzer: the system performs a cycle-to-cycle combustion analysis, evaluating the combustion parameters necessary to calculate the target SA, which is then actuated by the ECU. The approach proved to be efficient, reducing the number of engine cycles necessary for the calibration to less than 1000 per operating condition.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 261
Author(s):  
Mario Picerno ◽  
Sung-Yong Lee ◽  
Michal Pasternak ◽  
Reddy Siddareddy ◽  
Tim Franken ◽  
...  

The increasing requirements to further reduce pollutant emissions, particularly with regard to the upcoming Euro 7 (EU7) legislation, cause further technical and economic challenges for the development of internal combustion engines. All the emission reduction technologies lead to an increasing complexity not only of the hardware, but also of the control functions to be deployed in engine control units (ECUs). Virtualization has become a necessity in the development process in order to be able to handle the increasing complexity. The virtual development and calibration of ECUs using hardware-in-the-loop (HiL) systems with accurate engine models is an effective method to achieve cost and quality targets. In particular, the selection of the best-practice engine model to fulfil accuracy and time targets is essential to success. In this context, this paper presents a physically- and chemically-based stochastic reactor model (SRM) with tabulated chemistry for the prediction of engine raw emissions for real-time (RT) applications. First, an efficient approach for a time-optimal parametrization of the models in steady-state conditions is developed. The co-simulation of both engine model domains is then established via a functional mock-up interface (FMI) and deployed to a simulation platform. Finally, the proposed RT platform demonstrates its prediction and extrapolation capabilities in transient driving scenarios. A comparative evaluation with engine test dynamometer and vehicle measurement data from worldwide harmonized light vehicles test cycle (WLTC) and real driving emissions (RDE) tests depicts the accuracy of the platform in terms of fuel consumption (within 4% deviation in the WLTC cycle) as well as NOx and soot emissions (both within 20%).


Author(s):  
Enrico Corti ◽  
Claudio Forte ◽  
Giorgio Mancini ◽  
Davide Moro

One of the most effective factors influencing performance, efficiency, and pollutant emissions of internal combustion engines is the combustion phasing: in gasoline engines electronic control units (ECUs) manage the spark advance (SA) in order to set the optimal combustion phase. Combustion control is assuming a crucial role in reducing engine tailpipe emissions and maximizing performance. The number of actuations influencing the combustion is increasing, and as a consequence, the calibration of control parameters is becoming challenging. One of the most effective factors influencing performance and efficiency is the combustion phasing: for gasoline engines, control variables such as SA, air-to-fuel ratio (AFR), variable valve timing (VVT), and exhaust gas recirculation (EGR) are mostly used to set the combustion phasing. The optimal control setting can be chosen according to a target function (cost or merit function), taking into account performance indicators, such as indicated mean effective pressure (IMEP), brake-specific fuel consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature or knock intensity. Many different approaches can be used to reach the best calibration settings: design of experiment (DOE) is a common option when many parameters influence the results, but other methodologies are in use: some of them are based on the knowledge of the controlled system behavior by means of models that are identified during the calibration process. The paper proposes the use of a different concept, based on the extremum seeking approach. The main idea consists in changing the values of each control parameter at the same time, identifying its effect on the monitored target function, and allowing to shift automatically the control setting towards the optimum solution throughout the calibration procedure. An original technique for the recognition of control parameters variations effect on the target function is introduced, based on spectral analysis. The methodology has been applied to data referring to different engines and operating conditions, using IMEP, exhaust temperature, and knock intensity for the definition of the target function and using SA and AFR as control variables. The approach proved to be efficient in reaching the optimum control setting, showing that the optimal setting can be achieved rapidly and consistently.


Author(s):  
Enrico Corti ◽  
Claudio Forte

Engine performance and efficiency are largely influenced by combustion phasing. Operating conditions and control settings influence the combustion development over the crankshaft angle; the most effective control parameter used by electronic control units to optimize the combustion process for spark ignition engines is spark advance (SA). SA mapping is a time-consuming process, usually carried out with the engine running in steady state on the test bench, changing SA values while monitoring brake mean effective pressure, indicated mean effective pressure (IMEP), and brake specific fuel consumption (BSFC). Mean values of IMEP and BSFC for a test carried out with a given SA setting are considered as the parameters to optimize. However, the effect of SA on IMEP and BSFC is not deterministic, due to the cycle-to-cycle variation; the analysis of mean values requires many engine cycles to be significant of the performance obtained with the given control setting. Finally, other elements such as engine or components aging, and disturbances like air-to-fuel ratio or air, water, and oil temperature variations could affect the tests results; this facet can be very significant for racing engine testing. This paper presents a novel approach to SA mapping with the objective of improving the performance analysis robustness while reducing the test time. The methodology is based on the observation that, for a given running condition, IMEP can be considered a function of the combustion phasing, represented by the 50% mass fraction burned (MFB50) parameter. Due to cycle-to-cycle variation, many different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA. While MFB50 and IMEP absolute values are influenced by disturbance factors, the relationship between them holds, and it can be synthesized by means of the angular coefficient of the tangent line to the MFB50-IMEP distribution. The angular coefficient variations as a function of SA can be used to feed a SA controller, able to maintain the optimal combustion phasing. Similarly, knock detection is approached by evaluating two indexes; the distribution of a typical knock-sensitive parameter (maximum amplitude of pressure oscillations) is related to that of CHRNET (net cumulative heat release), determining a robust knock index. A knock limiter controller can then be added in order to restrict the SA range to safe values. The methodology can be implemented in real time combustion controllers; the algorithms have been applied offline to sampled data, showing the feasibility of fast and robust automatic mapping procedures.


2021 ◽  
pp. 146808742110050
Author(s):  
Enrica Malfi ◽  
Vincenzo De Bellis ◽  
Fabio Bozza ◽  
Alberto Cafari ◽  
Gennaro Caputo ◽  
...  

The adoption of lean-burn concepts for internal combustion engines working with a homogenous air/fuel charge is under development as a path to simultaneously improve thermal efficiency, fuel consumption, nitric oxides, and carbon monoxide emissions. This technology may lead to a relevant emission of unburned hydrocarbons (uHC) compared to a stoichiometric engine. The uHC sources are various and the relative importance varies according to fuel characteristics, engine operating point, and some geometrical details of the combustion chamber. This concern becomes even more relevant in the case of engines supplied with natural gas since the methane has a global warming potential much greater than the other major pollutant emissions. In this work, a simulation model describing the main mechanisms for uHC formation is proposed. The model describes uHC production from crevices and flame wall quenching, also considering the post-oxidation. The uHC model is implemented in commercial software (GT-Power) under the form of “user routine”. It is validated with reference to two large bore engines, whose bores are 31 and 46 cm (engines named accordingly W31 and W46). Both engines are fueled with natural gas and operated with lean mixtures (λ > 2), but with different ignition modalities (pre-chamber device or dual fuel mode). The engines under study are preliminarily schematized in the 1D simulation tool. The consistency of 1D engine schematizations is verified against the experimental data of BMEP, air flow rate, and turbocharger rotational speed over a load sweep. Then, the uHC model is validated against the engine-out measurements. The averaged uHC predictions highlight an average error of 7% and 10 % for W31 and W46 engines, respectively. The uHC model reliability is evidenced by the lack of need for a case-dependent adjustment of its tuning constants, also in presence of relevant variations of both engine load and ring pack design.


2021 ◽  
Author(s):  
Marco Manfredi ◽  
Marco Alberio ◽  
Marco Astolfi ◽  
Andrea Spinelli

Abstract Power production from waste heat recovery represents an attractive and viable solution to contribute to the reduction of pollutant emissions generated by industrial plants and automotive sector. For transport applications, a promising technology can be identified in bottoming mini-organic Rankine cycles (ORCs), devoted to heat recovery from internal combustion engines (ICE). While commercial ORCs exploiting turbo-expanders in the power range of hundreds kW to several MW are a mature technology, well-established design guidelines are not yet available for turbines targeting small power outputs (below 50 kW). The present work develops a reduced-order model for the preliminary design of mini-ORC radial inflow turbines (RITs) for high-pressure ratio applications, suitable to be integrated in a comprehensive cycle optimization. An exhaustive review of existing loss models, whose development pattern is retraced up to the original approaches, is proposed. This investigation is finalized in a loss models effectiveness analysis performed by testing several correlations over six existing geometries. These test case turbines, operating with different fluids and covering a wide range of target expansion ratio, size, and gross power output, are then employed to carry out the validation procedure, whose results prove the robustness and prediction capability of the proposed reduced-order model.


2021 ◽  
pp. 146808742110395
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal Maldonado ◽  
Laurent Odillard

The aftertreatment systems used in internal combustion engines need high temperatures for reaching its maximum efficiency. By this reason, during the engine cold start period or engine restart operation, excessive pollutant emissions levels are emitted to the atmosphere. This paper evaluates the impact of using a new cylinder deactivation strategy on a Euro 6 turbocharged diesel engine running under cold conditions (−7°C) with the aim of improving the engine warm-up process. This strategy is evaluated in two parts. First, an experimental study is performed at 20°C to analyze the effect of the cylinder deactivation strategy at steady-state and during an engine cold start at 1500 rpm and constant load. In particular, the pumping losses, pollutant emissions levels and engine thermal efficiency are analyzed. In the second part, the engine behavior is analyzed at steady-state and transient conditions under very low ambient temperatures (−7°C). In these conditions, the results show an increase of the exhaust temperatures of around 100°C, which allows to reduce the diesel oxidation catalyst light-off by 250 s besides of reducing the engine warm-up process in approximately 120 s. This allows to reduce the CO and HC emissions by 70% and 50%, respectively, at the end of the test.


2004 ◽  
Vol 16 (9) ◽  
pp. 226 ◽  
Author(s):  
M. J. Jasper ◽  
A. Stocker ◽  
S. A. Robertson

To implant and establish the connections that are vital for further development, the early embryo must attach to and then breech the barrier posed by the epithelium of the maternal tract. Expression of adhesion and anti-adhesion molecules in the luminal epithelium of the endometrium are thought to fluctuate in a temporal pattern to 'frame' the implantation site, with their expression regulated by endocrine and paracrine factors. Anti-adhesion molecules, such as members of the mucin family, provide a barrier to implantation in sites or at times unsuitable for embryo development. Expression of adhesion molecules, or specific integrins, are thought to aid in the adhesion of the embryo, allowing it to induce changes in the underlying tissue promoting embryo invasion and pregnancy. The aim of this study was to quantitate the expression of mRNA encoding the integrins αυ, α4 and β3 and MUC1 and MUC4 from Day 0 (oestrous) to Day 4 of pregnancy (implantation) using quantitative real time RT-PCR. Uterine tissues were collected at oestrous and at Days 1, 2, 3 and 4 of pregnancy (Day 1 corresponding to the presence of a vaginal plug), total RNA was extracted, DNAse treated, reverse transcribed into cDNA, and quantified by real-time PCR using SYBR Green chemistry. All specific primers were designed using GenBank sequences and data were normalised to β-actin mRNA expression. Expression of MUC1 and MUC4 mRNAs was dramatically reduced, with mean values 20-fold and 100-fold less than at oestrous respectively, by Day 4 of pregnancy. In contrast, expression of mRNAs encoding integrins αυ, α4 and β3 was detected throughout early pregnancy. These data demonstrate that adhesion and anti-adhesion molecules are differentially expressed in the murine uterus during early pregnancy and may be key mediators in embryo implantation, promoting attachment of the embryo to the luminal epithelium in an environment conducive to embryo growth and development. Supported by a Clive & Vera Ramaciotti Project Grant to MJ Jasper.


Author(s):  
John T. Lindsay ◽  
C. W. Kauffman

Real Time Neutron Radiography (RTNR) is rapidly becoming a valuable tool for nondestructive testing and basic research with a wide variety of applications in the field of engine technology. The Phoenix Memorial Laboratory (PML) at the University of Michigan has developed a RTNR facility and has been using this facility to study several phenomena that have direct application to internal combustion and gas turbine engines. These phenomena include; 1) the study of coking and debris deposition in several gas turbine nozzles (including the JT8D), 2) the study of lubrication problems in operating standard internal combustion engines and in operating automatic transmissions (1, 2, 3), 3) the location of lubrication blockage and subsequent imaging of the improvement obtained from design changes, 4) the imaging of sprays inside metallic structures in both a two-dimensional, standard radiographic manner (4, 5) and in a computer reconstructed, three-dimensional, tomographic manner (2, 3), and 5) the imaging of the fuel spray from an injector in a single cylinder diesel engine while the engine is operating. This paper will show via slides and real time video, the above applications of RTNR as well as other applications not directly related to gas turbine engines.


Author(s):  
Emiliano Pipitone ◽  
Salvatore Caltabellotta

Abstract In-cylinder expansion of internal combustion engines based on Diesel or Otto cycles cannot be completely brought down to ambient pressure, causing a 20% theoretical energy loss. Several systems have been implemented to recover and use this energy such as turbocharging, turbo-mechanical and turbo-electrical compounding, or the implementation of Miller Cycles. In all these cases however, the amount of energy recovered is limited allowing the engine to reach an overall efficiency incremental improvement between 4% and 9%. Implementing an adequately designed expander-generator unit could efficiently recover the unexpanded exhaust gas energy and improve efficiency. In this work, the application of the expander-generator unit to a hybrid propulsion vehicle is considered, where the onboard energy storage receives power produced by an expander-generator, which could hence be employed for vehicle propulsion through an electric drivetrain. Starting from these considerations, a simple but effective modelling approach is used to evaluate the energetic potential of a spark-ignition engine electrically supercharged and equipped with an exhaust gas expander connected to an electric generator. The overall efficiency was compared to a reference turbocharged engine within a hybrid vehicle architecture. It was found that, if adequately recovered, the unexpanded gas energy could reduce engine fuel consumption and related pollutant emissions by 4% to 12%, depending on overall power output.


Sign in / Sign up

Export Citation Format

Share Document