Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio With a Distributed Tip Mass

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Jae Eun Kim ◽  
Yoon Young Kim

Various mathematical beam models have been proposed for the efficient analysis of a piezoelectric energy harvester (PEH) and carrying out parameter study but there appears no beam model suitable for a PEH of a moderate width-to-length aspect ratio with a distributed tip mass, and so, moderate width-to-length aspect ratios and distribution effects of a tip mass over a finite length will be mainly focused on in the present beam analysis. To deal with a wide range of aspect ratios, the material coefficients appearing in the constitutive equations of a PEH beam will be interpolated by those of the limiting plane-strain and plane-stress conditions. The key idea in the interpolation is to derive the interpolation parameter analytically by using the fundamental frequency of a cantilevered beam of moderate aspect ratios. To deal with the distribution effects of a tip mass over a finite length, the use of a set of polynomial deflection shape functions is proposed in the assumed mode approach. The equations to predict the electrical outputs based on the proposed enhanced beam model are explicitly expressed in template forms, so one can calculate the outputs easily from the forms. The validity and accuracy were checked for unimorph and bimorph PEHs by comparing the results from the developed beam model, the conventional beam model, and a three-dimensional finite element model. The comparisons showed substantial improvements by the developed model in predicting the electrical outputs.

Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mana Iwai ◽  
Tatsuya Kikuchi ◽  
Ryosuke O. Suzuki

AbstractHigh-aspect ratio ordered nanomaterial arrays exhibit several unique physicochemical and optical properties. Porous anodic aluminum oxide (AAO) is one of the most typical ordered porous structures and can be easily fabricated by applying an electrochemical anodizing process to Al. However, the dimensional and structural controllability of conventional porous AAOs is limited to a narrow range because there are only a few electrolytes that work in this process. Here, we provide a novel anodizing method using an alkaline electrolyte, sodium tetraborate (Na2B4O7), for the fabrication of a high-aspect ratio, self-ordered nanospike porous AAO structure. This self-ordered porous AAO structure possesses a wide range of the interpore distance under a new anodizing regime, and highly ordered porous AAO structures can be fabricated using pre-nanotexturing of Al. The vertical pore walls of porous AAOs have unique nanospikes measuring several tens of nanometers in periodicity, and we demonstrate that AAO can be used as a template for the fabrication of nanomaterials with a large surface area. We also reveal that stable anodizing without the occurrence of oxide burning and the subsequent formation of uniform self-ordered AAO structures can be achieved on complicated three-dimensional substrates.


2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.


1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


1986 ◽  
Vol 108 (2) ◽  
pp. 285-292 ◽  
Author(s):  
W. Bra¨unling ◽  
F. Lehthaus

In a test facility for rotating annular cascades with three conical test sections of different taper angles (0, 30, 45 deg), experiments are conducted for two geometrically different turbine cascade configurations, a hub section cascade with high deflection and a tip section cascade with low deflection. The evaluation of time-averaged data derived from conventional probe measurements upstream and downstream of the test wheel in the machine-fixed absolute system is based on the assumption of axisymmetric stream surfaces. The cascade characteristics, i.e., mass flow, deflection, and losses, for a wide range of inlet flow angles and outlet Mach numbers are provided in the blade-fixed relative system with respect to the influence of annulus taper. Some of the results are compared with simple theoretical calculations. To obtain some information about the spatial structure of the flow within the cascade passages, surface pressure distributions on the profiles of the rotating test wheels are measured at three different radial blade sections. For some examples those distributions are compared with numerical results on plane cascades of the same sweep and dihedral angles and the same aspect ratios. The computer code used is based on a three-dimensional time-marching finite-volume method solving the Euler equations. Both experimental and numerical results show a fairly good qualitative agreement in the three-dimensional blade surface pressure distributions. This work will be continued with detailed investigations on the spatial flow structure.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


2020 ◽  
Vol 499 (2) ◽  
pp. 1841-1853
Author(s):  
Natascha Manger ◽  
Hubert Klahr ◽  
Wilhelm Kley ◽  
Mario Flock

ABSTRACT Theoretical models of protoplanetary discs have shown the vertical shear instability (VSI) to be a prime candidate to explain turbulence in the dead zone of the disc. However, simulations of the VSI have yet to show consistent levels of key disc turbulence parameters like the stress-to-pressure ratio α. We aim to reconcile these different values by performing a parameter study on the VSI with focus on the disc density gradient p and aspect ratio h = H/R. We use full 2π 3D simulations of the disc for chosen set of both parameters. All simulations are evolved for 1000 reference orbits, at a resolution of 18 cells per h. We find that the saturated stress-to-pressure ratio in our simulations is dependent on the disc aspect ratio with a strong scaling of α∝h2.6, in contrast to the traditional α model, where viscosity scales as ν∝αh2 with a constant α. We also observe consistent formation of large scale vortices across all investigated parameters. The vortices show uniformly aspect ratios of χ ≈ 10 and radial widths of approximately 1.5H. With our findings we can reconcile the different values reported for the stress-to-pressure ratio from both isothermal and full radiation hydrodynamics models, and show long-term evolution effects of the VSI that could aide in the formation of planetesimals.


2019 ◽  
Vol 30 (8) ◽  
pp. 1148-1162 ◽  
Author(s):  
Luca Luschi ◽  
Giuseppe Iannaccone ◽  
Francesco Pieri

Simplified one-dimensional models for composite beams with piezoelectric layers, which are intrinsically three-dimensional structures, are important for many applications, including piezoelectric energy harvesters. To reduce the dimensionality of the system, assumptions on the stress/strain state in the transverse direction are typically made. The most common are those of null transverse stress, used for narrow beams, null transverse deformation, used for wide beams, and continuous interface strain, suited for thin piezoelectric layers (we call this assumption thin film continuous). We show that the models based on these assumptions are often used uncritically for beam geometries for which large errors may result. In particular, null transverse stress fails even for narrow beams if the thickness is much smaller than the beam width. We give clear geometric criteria that, for any geometry, allow the selection of the most accurate model among the three. We also develop a single, unified beam equation encompassing the three models and compare the analytical results from this equation with finite element simulations over a wide range of beam lengths, widths, and layer thicknesses. The selection criteria and the unified beam equation form a valuable tool for fast and accurate design of composite piezoelectric beams.


2020 ◽  
Vol 39 (14) ◽  
pp. 1668-1685 ◽  
Author(s):  
Vignesh Subramaniam ◽  
Snehal Jain ◽  
Jai Agarwal ◽  
Pablo Valdivia y Alvarado

The design and characterization of a soft gripper with an active palm to control grasp postures is presented herein. The gripper structure is a hybrid of soft and stiff components to facilitate integration with traditional arm manipulators. Three fingers and a palm constitute the gripper, all of which are vacuum actuated. Internal wedges are used to tailor the deformation of a soft outer reinforced skin as vacuum collapses the composite structure. A computational finite-element model is proposed to predict finger kinematics. Thanks to its active palm, the gripper is capable of grasping a wide range of part geometries and compliances while achieving a maximum payload of 30 N. The gripper natural softness enables robust open-loop grasping even when components are not properly aligned. Furthermore, the grasp pose of objects with various aspect ratios and compliances can be robustly maintained during manipulation at linear accelerations of up to 15 m/s2 and angular accelerations of up to 5.23 rad/s2.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Cong Qi ◽  
Yurong He ◽  
Yanwei Hu ◽  
Juancheng Yang ◽  
Fengchen Li ◽  
...  

In this work, the natural convection heat transfer of Cu-gallium nanofluid in a differentially heated enclosure is investigated. A single-phase model is employed with constant or temperature-dependent properties of the fluid. The results are shown over a wide range of Grashof numbers, volume fractions of nanoparticles, and aspect ratios. The Nusselt number is demonstrated to be sensitive to the aspect ratio. It is found that the Nusselt number is more sensitive to thermal conductivity than viscosity at a low velocity (especially for a low aspect ratio and a low Grashof number), however, it is more sensitive to the viscosity than the thermal conductivity at a high velocity (high aspect ratio and high Grashof number). In addition, the evolution of velocity vectors, isotherms, and Nusselt number for a small aspect ratio is investigated.


Sign in / Sign up

Export Citation Format

Share Document