On the Strain Rate- and Temperature-Dependent Tensile Behavior of Eutectic Sn–Pb Solder

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
B. L. Boyce ◽  
L. N. Brewer ◽  
M. K. Neilsen ◽  
M. J. Perricone

The present study examines the thermomechanical strain-rate sensitivity of eutectic 63Sn–37Pb solder over a broad range of strain-rates from 0.0002 s–1 to 200 s–1, thus encompassing failure events between 1 h and 1 ms, at temperatures ranging from −60 °C to + 100 °C. A newly developed servohydraulic tensile method enabled this broad range of strain-rates to be evaluated by a single technique, eliminating ambiguity caused by evaluation across multiple experimental methods. Two solder conditions were compared: a normalized condition representing a solder joint that has largely stabilized ∼30 days after solidification and an aged condition representing ∼30 years at near-ambient temperatures. The tensile behavior of both conditions exhibited dramatic temperature and strain-rate sensitivity. At 100 °C, the yield strength increased from 5 MPa at 0.0002 s–1 to 42 MPa at 200 s–1, while at −60 °C, the yield strength increased from 57 MPa at 0.0002 s–1 to 71 MPa at 200 s–1. The room temperature strain rate-dependent behavior was also measured for the lead free SAC396 alloy. The SAC alloy exhibited thermal strain-rate sensitivity similar to Sn–Pb over this temperature and strain-rate regime. Microstructural characterization using backscatter electron imaging and electron backscatter diffraction showed distinct, morphological changes of the microstructure for different thermomechanical conditions as well as some systematic changes in the crystallographic texture. However, very little intergranular rotation was observed over the range of thermomechanical conditions, suggesting the dominance of a grain boundary sliding (GBS) deformation mechanism. Finally, a recently developed unified-creep-plasticity constitutive model for solder deformation was found to describe the observed behavior with much higher fidelity than the common Johnson–Cook model.

2016 ◽  
Vol 838-839 ◽  
pp. 106-109 ◽  
Author(s):  
Tetsuya Matsunaga ◽  
Hidetoshi Somekawa ◽  
Hiromichi Hongo ◽  
Masaaki Tabuchi

This study investigated strain-rate sensitivity (SRS) in an as-extruded AZ31 magnesium (Mg) alloy with grain size of about 10 mm. Although the alloy shows negligible SRS at strain rates of >10-5 s-1 at room temperature, the exponent increased by one order from 0.008 to 0.06 with decrease of the strain rate down to 10-8 s-1. The activation volume (V) was evaluated as approximately 100b3 at high strain rates and as about 15b3 at low strain rates (where b is the Burgers vector). In addition, deformation twin was observed only at high strain rates. Because the twin nucleates at the grain boundary, stress concentration is necessary to be accommodated by dislocation absorption into the grain boundary at low strain rates. Extrinsic grain boundary dislocations move and engender grain boundary sliding (GBS) with low thermal assistance. Therefore, GBS enhances and engenders SRS in AZ31 Mg alloy at room temperature.


1988 ◽  
Vol 120 ◽  
Author(s):  
T. R. Bieler ◽  
T. G. Nieh ◽  
J. Wadsworth ◽  
A. K. Mukherjee

AbstractThe tensile behavior of IN90211 was characterized at strain rates between 0.0001/sec and 340/sec at temperatures between 425 and 475 °C. At strain rates below 0.1/sec, the strain rate sensitivity m is about 0.027, with corresponding low elongation (<100%). At strain rates above 0.1/sec, the strain rate sensitivity increases to 0.26. A maximum elongation of 500% was obtained at 475 °C at a strain rate of 2.5/sec. Grain boundary sliding and rotation was observed on the highly elongated specimens and fracture surfaces exhibited intergranular fracture. Experimental data in the high strain rate regime (superplastic) revealed the existence of a temperature dependent threshold stress that seemed unrelated to the low stress deformation regime. This result is consistent with stress relaxation experiments. These threshold stresses are generally lower than those typically observed in other oxide dispersion strengthened (ODS) alloys. This observation is not expected from conventional superplastic creep theory.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000480-000487
Author(s):  
Luke A. Wentlent ◽  
James Wilcox ◽  
Xuanyi Ding

Abstract As the electronics industry continues to evolve a concerted effort has developed to implement lower melting point solders. The ability to minimize the thermal exposure that an assembly is subjected to affords significant benefits with respect to both the reliability and the materials that can be used. One of the most popular low melt solder alloys currently being investigated by the industry is the Bi-Sn eutectic system, which has a melting point of 139°C. The BiSn system itself is not particularly novel as it was posited as a SAC alternative during the initial shift from Pb based solders. While a body of knowledge currently exists regarding this system, and the near eutectic variant BiSnAg, there are still concerns regarding its ductility, especially as a function of thermal exposure and strain rate. Bismuth is widely acknowledged as a brittle element and its presence in such quantities raises concerns of not just Cu6Sn5 embrittlement but also solder fragility in high strain rate types of environments. A challenge with regards to near term implementation is that most packages are not available with BiSn solder bumps. Therefore, it will be necessary to use components already balled with SAC 305 solder. This means that the resulting solder interconnect, reflowed below conventional SAC reflow temperatures, will form a type of mixed hybrid microstructure. This non-equilibrium microstructure will be composed of two regions, one Bi-rich region which is well past saturation and a second region which is Bi-deficient. It is of specific industrial interest then to not just investigate the BiSn solder system but also within the context of a realistic mixed interconnect. Recent work by several researchers has shown that this hybrid microstructure is unstable and quite active with respect to the movement and localized concentration of the Bismuth. The degree of mixing of these two regions has been shown to be highly dependent upon reflow temperature and the paste to ball volume ratio. Mixed SAC-BiSn solder joints were formed by placing SAC 305 spheres on BiSn paste deposits for a paste to ball volume ratio of .18. These samples were then reflowed at either 175°C or 200°C. SAC 305 control samples were also made using a conventional Pb-free reflow profile with a peak temperature of 247°C. A 22 mil Cu-OSP pad on a 1.0 mm thick FR4 substrate was used for all samples. A selection of the solder joints were then isothermally aged at 90°C for 200 hours. Using a joint level micromechanical tester, ball shear tests were conducted at a range of strain rates for samples in the as-reflowed and aged state. Using this information, the strain rate sensitivity of the interconnects was mapped and correlated with the observed failure modes. Investigations into the fracture mechanisms were conducted by examining the shear fracture surface with optical and scanning electron microscopy. Additionally, the evolution of the microstructure was characterized. Results showed a clear transition from ductile solder failure to a brittle separation failure at the higher strain rates.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


2012 ◽  
Vol 735 ◽  
pp. 93-100
Author(s):  
Alexander J. Carpenter ◽  
Anthony J. Barnes ◽  
Eric M. Taleff

Complex sheet metal components can be formed from lightweight aluminum and magnesium sheet alloys using superplastic forming technologies. Superplastic forming typically takes advantage of the high strain-rate sensitivity characteristic of grain-boundary-sliding (GBS) creep to obtain significant ductility at high temperatures. However, GBS creep requires fine-grained materials, which can be expensive and difficult to manufacture. An alternative is provided by materials that exhibit solute-drag (SD) creep, a mechanism that also produces elevated values of strain-rate sensitivity. SD creep typically operates at lower temperatures and faster strain rates than does GBS creep. Unlike GBS creep, solute-drag creep does not require a fine, stable grain size. Previous work by Boissière et al. suggested that the Mg-Y-Nd alloy, essentially WE43, deforms by SD creep at temperatures near 400°C. The present investigation examines both tensile and biaxial deformation behavior of ElektronTM 43 sheet, which has a composition similar to WE43, at temperatures ranging from 400 to 500°C. Data are presented that provide additional evidence for SD creep in Elektron 43 and demonstrate the remarkable degree of biaxial strain possible under this regime (>1000%). These results indicate an excellent potential for producing complex 3-D parts, via superplastic forming, using this particular heat-treatable Mg alloy.


1972 ◽  
Vol 94 (1) ◽  
pp. 207-212 ◽  
Author(s):  
D. P. Kendall

The effect of elastic strain rates ranging from 10−14 to 10 sec−1 and temperatures ranging from 200 K (−100 F) to 590 K (600 F) on the yield strength of several steels is reported. The steels utilized are a 1018 mild steel, 4340 steel, H-11 tool steel, and 300 grade maraging steel. The results are interpreted in terms of the Cottrell-Bilby yielding model based on release of dislocations from locking carbon atmospheres. The results for all of the materials except the maraging steel are consistent with this model if it is modified to account for relocking of dislocations by migration of carbon atoms. The maraging steel shows a constant strain rate sensitivity at a constant temperature, over the range of strain rates investigated. This rate sensitivity decreases with increasing temperature and at 590 K (600 F) a decreasing strength with increasing strain rate is found. This is attributed to stress aging effects.


2019 ◽  
Vol 298 ◽  
pp. 43-51
Author(s):  
Jia Yong Si ◽  
Song Hao Liu ◽  
Long Chen

This research investigated the effect of hot extrusion on the flow behaviour of nickel-based superalloy FGH4096 by hot compression experiments in the temperature range from 1020 to 1110 °C and strain rates ranging from 0.1 to 0.001 s-1. The influence of the hot extrusion on the initial microstructures, work hardening rate, strain rate sensitivity, and activation energy of deformation were discussed. The results show that the extruded microstructure is constituted by the fine dynamic recrystallisation of grains. The true strain-true stress curves show that the as-HIPed and as-HEXed FGH4096 superalloy present double flow stress peaks and discontinuous flow softening. The as-HEXed FGH4096 is easily dynamically softened at high temperatures and high strain rates compared with as-HIPed microstructures. As for the work hardening rate, the as-HEXed FGH4096 exhibits higher θ values than that of as-HIPed. It is beneficial to the homogenous deformation and grain refinement during subsequent turbine disk forging. Comparing to as-HIPed FGH4096, the highest strain rate sensitivity value of as-HEXed is 0.306 at 1110 °C. The isothermal superplastic forging of a P/M turbine disk may be carried out at this temperature. The deformation activation energy value of the as-HIPed FGH4096 is lower which means that dislocation sliding and climbing can be easily initiated in the as-HIPed alloy.


Sign in / Sign up

Export Citation Format

Share Document