A Numerical Study of Concurrent Flame Propagation Over Methanol Pool Surface

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Seik Mansoor Ali ◽  
Vasudevan Raghavan ◽  
K. Velusamy ◽  
Shaligram Tiwari

Concurrent flame spread over methanol pool surface under atmospheric conditions and normal gravity has been numerically investigated using a transient, two-phase, reacting flow model. The average flame spread velocities for different concurrent air velocities predicted using the model are quite close to the experimental data available in the literature. As the air velocity is increased, the fuel consumption rate increases and aids in faster flame spread process. The flame initially anchors around the leading edge of the pool and the flame tip spreads over the pool surface. The rate of propagation of flame tip along the surface is seen to be steady without fluctuations. The flame spread velocity is found to be nonuniform as the flame spreads along the pool surface. The flame spread velocity is seen to be higher initially. It then decreases up to a point when the flame has propagated to around 40% to 50% of the pool length. At this position, a secondary flame anchoring point is observed, which propagates toward the trailing edge of the pool. As a result, there is an increasing trend observed in the flame spread velocity. As the air velocity is increased, the initial flame anchoring point moves downstream of the leading edge of the fuel pool. The variations of interface quantities depend on the initial flame anchoring location and the attainment of thermodynamic equilibrium between the liquid- and gas-phases.

2021 ◽  
Author(s):  
Qianpeng Zhao ◽  
Yong Mu ◽  
Jinhu Yang ◽  
Yulan Wang ◽  
Gang Xu

Abstract The sub-atmospheric ignition performance of an SPP (Stratified Partially Premixed) injector and combustor is investigated experimentally on the high-altitude test facility. In order to explore the influence of sub-atmospheric pressure on reignition performance and flame propagation mode, experiments are conducted under different pressures ranging from 19 kPa to 101 kPa. The inlet temperature and pressure drop of the injector (ΔPsw/P3t) are kept constant at 303 K and 3% respectively. The transparent quartz window mounted on the sidewall of the model combustor provides optical access of flame signals. Ignition fuel-air ratio (FAR) under different inlet pressures are experimentally acquired. The spark ignition processes, including the formation of flame kernel, the flame development and stabilization are recorded by a high-speed camera at a rate of 5kHz. Experimental results indicate that the minimum ignition FAR grows rapidly as the inlet air pressure decreases. An algorithm is developed to track the trajectory of flame kernels within 25ms following the spark during its breakup and motion processes. Results show that the calculated trajectory provides a clear description of the flame evolution process. Under different inlet air pressures, the propagation trajectories of flame kernels share similarities in initial phase. It is pivotal for a successful ignition that the initial flame kernel keeps enough intensity and moves into CTRZ (Center-Toroidal Recirculation Zone) along radial direction. Finally, the time-averaged non-reacting flow field under inlet pressure of 54kPa and fuel mass flow of 8kg/h is simulated. The effects of flow structure and fuel spatial distribution on kernel propagation and flame evolution are analyzed.


Author(s):  
Litao Zhang ◽  
Lili Zheng ◽  
Lingyun Hou

This paper presents numerical study of high-speed combustion and its relationship with thermal stress distribution on a cavity combustion chamber. First, a physical model is established to describe high speed compressible turbulent reacting flow as well as thermal transport in combustor structure. It is then applied to a model combustor with two-staged fuel injections to examine the effects of fuel flow rate and inflow conditions on the heat flux intensity and thermal stress distributions across the thickness of the combustor wall. The result shows that the injection method of the first stage has a great influence on the flow field near the second one, and it affects combustion and heat release distribution inside the combustor. The intensity of heat flux passing through the combustor wall changes along the downstream of the flow, and large thermal stresses are generated in the vicinity of the injector, the leading edge and the trailing edge of the cavity.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5676
Author(s):  
Bittagowdanahalli Manjegowda Ningegowda ◽  
Faniry Nadia Zazaravaka Rahantamialisoa ◽  
Adrian Pandal ◽  
Hrvoje Jasak ◽  
Hong Geun Im ◽  
...  

In the present numerical study, implicit large eddy simulations (LES) of non-reacting multi-components mixing processes of cryogenic nitrogen and n-dodecane fuel injections under transcritical and supercritical conditions are carried out, using a modified reacting flow solver, originally available in the open source software OpenFOAM®. To this end, the Peng-Robinson (PR) cubic equation of state (EOS) is considered and the solver is modified to account for the real-fluid thermodynamics. At high pressure conditions, the variable transport properties such as dynamic viscosity and thermal conductivity are accurately computed using the Chung transport model. To deal with the multicomponent species mixing, molar averaged homogeneous classical mixing rules are used. For the velocity-pressure coupling, a PIMPLE based compressible algorithm is employed. For both cryogenic and non-cryogenic fuel injections, qualitative and quantitative analyses are performed, and the results show significant effects of the chamber pressure on the mixing processes and entrainment rates. The capability of the proposed numerical model to handle multicomponent species mixing with real-fluid thermophysical properties is demonstrated, in both supercritical and transcritical regimes.


2011 ◽  
Vol 189-193 ◽  
pp. 1782-1785
Author(s):  
Lin Cai ◽  
Jin Li Wang ◽  
Hong Tao Zheng

Annular flow is a based flow pattern of two-phase in the pipe, and oil air flow in delivery pipe of Oil-Air lubrication (OAL) system is one of them. In order to learn the entrainment mechanism of annular flow in OAL pipe, both experiment adopted observational method and numerical simulation used Computational Fluid Dynamic (CFD) were carried out. The pipe diameter is 4mm and Volume of Fluid (VOF) model was used for two phase flow in simulation. The results shows that: it is a wave-annular flow in OAL pipe, and the oil wave in pipe is affected by air, when air velocity is low, the wave is clearly and regularly, but when air velocity increases, the wave become turbulent. When oil or air flow rate increases, the shear stress of pipe wall will be increased, the wave height will be increased as air velocity increases.


Author(s):  
Zhenlong Wu ◽  
Yihua Cao

Icing and rainfall are the two critical meteorological factors that threaten the aircraft flight safety. A number of previous studies have shown their individual influences on aircraft aerodynamics; however, to date no studies on their coupling effects exist. In this paper, a numerical study is conducted to focus on the aerodynamic performance of a NACA 23012 airfoil exposed to heavy rain in the presence of an ice accretion by supercooled raindrop on the leading edge. An Eulerian–Lagrangian two-phase flow approach developed for rain simulation in our previous work is adopted here with some improvement in the turbulence model. A series of new phenomena about the aerodynamic performance and wake characteristics under the coupling effects of ice accretion and rainfall are found and discussed. These results do not seem to have been published previously and should be of significance to the aircraft industry for improved aircraft design and pilot training.


Author(s):  
Mohamed Boutazakhti ◽  
Ibrahim Yimer ◽  
Pierre E. Sullivan ◽  
Murray J. Thomson

This work examines the flow downstream of a Parker Hannifin low NOx LDI nozzle. The nozzle is a square matrix of 3 × 3 airblast simplex fuel ports. The air pressure drop was set to 5%, for a Reynolds number of 40,000. Liquid injection pressure was 2.28kPa. The nozzle is tested at atmospheric conditions without combustion. The objective of this work is twofold: first characterize the spray and the turbulent flow fields; and second examine the effect of the interaction between jets on turbulence and spray profiles. Jet-jet lateral impingement starts within ∼ 1–2 nozzle diameters downstream. The comparison of a single jet and the 3 × 3 matrix spray profiles shows some degree of coalescence due to the interaction between jets. Despite this, the Sauter mean diameter of the resulting spray field is in the 25–35 μm range. In the first few air swirl cup diameters downstream of the nozzle exit plane (down to z/D = 3), the droplets are still accelerating to the air velocity and turbulence is anisotropic. No–slip and turbulence isotropy assumption are accurate only well downstream of the exit plane (z/D = 7.5).


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3634
Author(s):  
Grzegorz Czerwiński ◽  
Jerzy Wołoszyn

With the increasing trend toward the miniaturization of electronic devices, the issue of heat dissipation becomes essential. The use of phase changes in a two-phase closed thermosyphon (TPCT) enables a significant reduction in the heat generated even at high temperatures. In this paper, we propose a modification of the evaporation–condensation model implemented in ANSYS Fluent. The modification was to manipulate the value of the mass transfer time relaxation parameter for evaporation and condensation. The developed model in the form of a UDF script allowed the introduction of additional source equations, and the obtained solution is compared with the results available in the literature. The variable value of the mass transfer time relaxation parameter during condensation rc depending on the density of the liquid and vapour phase was taken into account in the calculations. However, compared to previous numerical studies, more accurate modelling of the phase change phenomenon of the medium in the thermosyphon was possible by adopting a mass transfer time relaxation parameter during evaporation re = 1. The assumption of ten-fold higher values resulted in overestimated temperature values in all sections of the thermosyphon. Hence, the coefficient re should be selected individually depending on the case under study. A too large value may cause difficulties in obtaining the convergence of solutions, which, in the case of numerical grids with many elements (especially three-dimensional), significantly increases the computation time.


Sign in / Sign up

Export Citation Format

Share Document