Ultrasonic Vibration-Assisted Pelleting of Wheat Straw: A Designed Experimental Investigation on Pellet Quality and Sugar Yield

Author(s):  
P. F. Zhang ◽  
Q. Zhang ◽  
T. W. Deines ◽  
Z. J. Pei ◽  
D. H. Wang

Increasing demands and concerns for reliable supply of liquid transportation fuels make it important to find alternative sources to petroleum-based fuels. One such alternative is cellulosic ethanol. However, several technical barriers have hindered large-scale, cost-effective manufacturing of cellulosic ethanol, such as low density of cellulosic feedstocks (causing high transportation and storage costs) and low efficiency of enzymatic hydrolysis (causing longer processing time and low sugar yield). Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic materials and sugar yield in enzymatic hydrolysis. At present, effects of process variables in UV-A pelleting on pellet quality (density, durability, and spring-back) and sugar yield have not been adequately investigated. This paper reports an experimental investigation on UV-A pelleting of wheat straw. A 24 factorial design is employed to evaluate effects of process variables (moisture content, sieve size, pelleting pressure, and ultrasonic power) on output variables (pellet density, durability, spring-back, and sugar yield).

Author(s):  
Pengfei Zhang ◽  
Timothy Deines ◽  
Daniel Nottingham ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Increasing demands and concerns for the reliable supply of liquid transportation fuels make it important to find alternative sources to petroleum based fuels. One such alternative is cellulosic biofuels. However, several technical barriers have hindered large-scale, cost-effective manufacturing of cellulosic biofuels, such as the low density of cellulosic feedstocks (causing high transportation and storage costs) and the low efficiency of enzymatic hydrolysis process (causing longer processing time and low sugar yield). Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic materials by compressing them into pellets. UV-A pelleting can also increase the sugar yield of cellulosic biomass materials in hydrolysis. At present, the effects of process variables in UV-A pelleting on pellet quality (density, durability, and stability) and sugar yield have not been adequately investigated. This paper reports an experimental investigation on UV-A pelleting of wheat straw. A 24 factorial design is employed to evaluate the effects of process variables (moisture content, particle size, pelleting pressure, and ultrasonic power) on output variables (pellet density, durability, stability, and sugar yield).


Author(s):  
Qi Zhang ◽  
P. F. Zhang ◽  
Timothy Deines ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Cellulosic biofuels can be used to replace traditional liquid transportation fuels. Cellulosic biomass is feedstock in manufacturing of cellulosic biofuels. However, the low density of cellulosic biomass feedstock hinders large-scale and cost-effective manufacturing of cellulosic biofuels. Another bottleneck factor in manufacturing of cellulosic biofuels is the low efficiency of the enzymatic hydrolysis of cellulosic biomass materials resulting in a low sugar yield. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass feedstocks via combined effects of mechanical compression and ultrasonic vibration of the tool on the cellulosic biomass. Meanwhile ultrasonic vibration may act as a beneficial pretreatment for enzymatic hydrolysis, which can possibly increase the efficiency of hydrolysis and obtain a higher sugar yield. The pressure and the ultrasonic power are important parameters in UV-A pelleting. Their effects on pellet quality (density, durability, and stability) and sugar yield (after hydrolysis) are experimentally investigated.


2020 ◽  
Vol 10 (21) ◽  
pp. 7638
Author(s):  
Vasile-Florin Ursachi ◽  
Gheorghe Gutt

The aim of this study is to find the optimal pretreatment conditions and hydrolysis in order to obtain a high yield of bioethanol from wheat straw. The pretreatments were performed with different concentrations of sulphuric acid 1, 2 and 3% (v/v), and were followed by an enzymatic hydrolysis that was performed by varying the solid-to-liquid ratio (1/20, 1/25 and 1/30 g/mL) and the enzyme dose (30/30 µL/g, 60/60 µL/g and 90/90 µL/g Viscozyme® L/Celluclast® 1.5 L). This mix of enzymes was used for the first time in the hydrolysis process of wheat straws which was previously pretreated with dilute sulfuric acid. Scanning electron microscopy indicated significant differences in the structural composition of the samples because of the pretreatment with H2SO4 at different concentrations, and ATR-FTIR analysis highlighted the changes in the chemical composition in the pretreated wheat straw as compared to the untreated one. HPLC-RID was used to identify and quantify the carbohydrates content resulted from enzymatic hydrolysis to evaluate the potential of using wheat straws as a raw material for production of cellulosic ethanol in Romania. The highest degradation of lignocellulosic material was obtained in the case of pretreatment with 3% H2SO4 (v/v), a solid-to-liquid ratio of 1/30 and an enzyme dose of 90/90 µL/g. Simultaneous saccharification and fermentation were performed using Saccharomyces cerevisiae yeast, and for monitoring the fermentation process a BlueSens equipment was used provided with ethanol, O2 and CO2 cap sensors mounted on the fermentation flasks. The highest concentration of bioethanol was obtained after 48 h of fermentation and it reached 1.20% (v/v).


Author(s):  
Q. Feng ◽  
W. L. Cong ◽  
M. Zhang ◽  
Z. J. Pei ◽  
C. Z. Ren

As one of the near-to-mid-term alternatives to fossil fuels, cellulosic biofuels can cut greenhouse gas emissions while continuing to meet liquid transportation fuel needs. By processing cellulosic biomass into pellets, density and handling efficiency of cellulosic feedstocks will be improved, resulting in a reduction in transportation and handling costs in biofuel manufacturing. Temperature of biomass during the pelleting process can affect the quality of the pellet. But effects of pelleting variables on biomass temperature during ultrasonic vibration-assisted (UV-A) pelleting are still unknown. This paper reports an experimental investigation on temperature of biomass in UV-A pelleting. It studies the effects of moisture content of the biomass and pelleting variables (ultrasonic power, tool travel distance, and feedrate). The results will be helpful in understanding the effects of ultrasonic vibration on biomass temperature, compaction mechanism, and biofuel conversion.


Author(s):  
Qi Zhang ◽  
Pengfei Zhang ◽  
Shing Chang ◽  
Z. J. Pei ◽  
Donghai Wang

Cellulosic ethanol is an attractive alternative to petroleum-based liquid transportation fuels. However, low density of cellulosic biomass (the feedstock for cellulosic ethanol) causes high costs in biomass logistics and hinders large-scale and cost-effective manufacturing of cellulosic ethanol. Ultrasonic vibration-assisted (UV-A) pelleting can significantly increase the density of cellulosic biomass by compressing raw cellulosic biomass into pellets. Pellet density and durability are two important physical properties of a pellet. In this study, a multiple response surface methodology was employed to optimize the input variables (pelleting time, pressure, and ultrasonic power) in UV-A pelleting of sorghum stalks for simultaneously maximized pellet density and durability. Second-order polynomial models were used to fit the experimental results. Main and interaction effects of the input variables on pellet density and durability were also investigated.


2012 ◽  
Vol 7 (1) ◽  
pp. 59 ◽  
Author(s):  
M. Zhang ◽  
X.X. Song ◽  
Z.J. Pei ◽  
T.W. Deines ◽  
Clyde Treadwell

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiquan Wang ◽  
Suqing Wu ◽  
Chunzhen Fan ◽  
Xiangyong Zheng ◽  
Wei Zhang ◽  
...  

AbstractTo enhance the reducing sugar yield in enzymatic hydrolysis, various factors (NaOH concentration, solid content and pre-treatment time) that affect the pre-treatment process were investigated and evaluated based on the reducing sugar yield of the subsequent enzymatic hydrolysis. The enzymatic hydrolysis was based on the cellulase from Trichoderma reesi ATCC 26921, the optimum NaOH pre-treatment conditions were an NaOH concentration of 1.0% (w/w), a solid content of 5.0% (w/v) and a pre-treatment time of 60 min. Various parameters that affect the enzymatic hydrolysis of wheat straw, including the solid content, enzyme loading, pH and hydrolysis time, were investigated and optimized through a Box–Behnken design and response surface methodology. The predicted optimum conditions for enzymatic hydrolysis were a solid content of 8.0% (w/v), an enzyme loading of 35 FPU/g substrate, a temperature of 50 °C, a pH of 5.3 and a hydrolysis time of 96 h. The experimental result showed that the maximum reducing sugar yield was 60.73% (53.35% higher than the wheat straw without NaOH pre-treatment), which is in accordance with the predicted conditions.


2021 ◽  
Vol 15 (3) ◽  
pp. 399-407
Author(s):  
Zahoor ◽  
Wen Wang ◽  
Xuesong Tan ◽  
Qiang Yu ◽  
Yongming Sun ◽  
...  

NaOH/urea (NU) pretreatment at lower than 0 °C has been frequently applied for improving bio-conversion of lignocellulose, but the wastewater generated from the pretreatment process is hard to dispose. KOH/urea (KU) pretreatment for enhancing bioconversion of lignocellulose has recently attracted researchers’ attention due to the recycling of wastewater for facilitating crops’ growth. This study compared the effects of NU and KU pretreatments at cold conditions on the enzymatic hydrolysis and bioethanol yield from wheat straw (WS). By using response surface methodology an optimal pretreatment with an equal ratio of alkali/urea (4% w/v) at −20 °C for 3 h was established. The enzymatic hydrolysis of KU-treated WS was 81.17%, which was similar to that of NU-treated WS (83.72%) under the same condition. It means that KU pretreatment has equal ability to NU pretreatment to improve enzymatic saccharification of lignocellulose. KU pretreatment has the promising potential to replace NU pretreatment for facilitating bioconversion of lignocellulose in cold conditions due to the clean way to recycle its wastewater as fertilizer for crop growth. Hence, KU pretreatment combined with enzymatic hydrolysis and fermentation could be a promising green way to cellulosic ethanol production with zero waste emission.


Author(s):  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei ◽  
Linda Pei

Biofuels made from cellulosic biomass are an alternative to petroleum-based liquid transportation fuels. A key barrier to cost-effective manufacturing of cellulosic biofuel is low sugar yield in enzymatic hydrolysis. Particle size and crystallinity index of cellulosic biomass are two important parameters in enzymatic hydrolysis. The current literature contains many experimental investigations about effects of biomass particle size on sugar yield. However, particle size, often reduced by ball milling, is correlated with crystallinity index. Changes in particle size usually cause changes in crystallinity index. Therefore, particle size and crystallinity index may have confounding effects on sugar yield. Relations between particle size and sugar yield are not clear. This paper reports an experimental investigation on sugar yields from switchgrass particles produced by three methods: cutting milling, hammer milling, and manual cutting. The particles have different sizes but the same crystallinity index. Results show that there are no significant differences among sugar yields from these particles of different sizes. Particle size within the tested range has no significant effects on sugar yield.


Author(s):  
Qi Zhang ◽  
Pengfei Zhang ◽  
Z. J. Pei ◽  
Jonathan Wilson ◽  
Leland McKinney ◽  
...  

Ethanol produced from cellulosic biomass is an alternative to petroleum-based transportation fuels. However, its manufacturing costs are too high for cellulosic ethanol to be competitive. Cellulosic feedstocks have low density, causing their transportation and storage expensive, contributing to high manufacturing costs of cellulosic ethanol. Pelleting can increase the density of cellulosic feedstocks and reduce their transportation and storage costs. Ultrasonic vibration-assisted (UV-A) pelleting is a new pelleting method. Effects of input pelleting parameters (ultrasonic power, pelleting pressure, and particle size) on pellet quality and sugar yield have been studied. However, the effects of these parameters on power consumption in UV-A pelleting have not been studied. Since power consumption directly affects ethanol manufacturing costs, lower power consumption is desirable. The objective of this paper is to study effects of different input parameters (biomass material, particle size, ultrasonic power, and pelleting pressure) of UV-A pelleting on power consumption. Four types of biomass materials (big bluestem, corn stover, sorghum stalk, and wheat straw) were studied. Sorghum stalk consumed the least power. Pelleting pressure, particle size and ultrasonic power significantly affected power consumption of all four materials. Higher ultrasonic power and pelleting pressure resulted in lower power consumption. In addition, this paper also compares power consumption between UV-A pelleting and ring-die pelleting (a traditional pelleting method).


Sign in / Sign up

Export Citation Format

Share Document