scholarly journals Optimisation of enzymatic saccharification of wheat straw pre-treated with sodium hydroxide

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiquan Wang ◽  
Suqing Wu ◽  
Chunzhen Fan ◽  
Xiangyong Zheng ◽  
Wei Zhang ◽  
...  

AbstractTo enhance the reducing sugar yield in enzymatic hydrolysis, various factors (NaOH concentration, solid content and pre-treatment time) that affect the pre-treatment process were investigated and evaluated based on the reducing sugar yield of the subsequent enzymatic hydrolysis. The enzymatic hydrolysis was based on the cellulase from Trichoderma reesi ATCC 26921, the optimum NaOH pre-treatment conditions were an NaOH concentration of 1.0% (w/w), a solid content of 5.0% (w/v) and a pre-treatment time of 60 min. Various parameters that affect the enzymatic hydrolysis of wheat straw, including the solid content, enzyme loading, pH and hydrolysis time, were investigated and optimized through a Box–Behnken design and response surface methodology. The predicted optimum conditions for enzymatic hydrolysis were a solid content of 8.0% (w/v), an enzyme loading of 35 FPU/g substrate, a temperature of 50 °C, a pH of 5.3 and a hydrolysis time of 96 h. The experimental result showed that the maximum reducing sugar yield was 60.73% (53.35% higher than the wheat straw without NaOH pre-treatment), which is in accordance with the predicted conditions.

2018 ◽  
Vol 156 ◽  
pp. 01015
Author(s):  
Tri Poespowati ◽  
Ardy Riyanto ◽  
Hazlan ◽  
Ali Mahmudi ◽  
Rini Kartika-Dewi

Ulva lactuca is one of green macro-algae that has a significant cellulose content. This study aims to determine the effect of variations in substrate-enzyme ratio and hydrolysis time on the enzymatic hydrolysis process of cellulose extracted from Ulva lactuca to produce fermentable sugar or reducing sugar as a raw material for making bioethanol. Firstly, Liquid Hot Water (LHW) pre-treatment process was performed at the temperature of 135°C for 20 minutes; the purpose of this pre-treatment was to reduce the content of hemicellulose and to increase the cellulose content. Secondly, enzymatic hydrolysis process using cellulase enzyme was carried out, in this process citrate buffer was needed in order to stabilize the pH level during hydrolysis process. The process variables were ratio of substrate-enzyme (1:0.05; 1:0.1; 1:1.5; 1:2 and 1:2.5 w/w) and hydrolysis time (24, 48 and 72 hours) under temperature of 45°C and pH level of 5.5. The results shows that the highest reducing sugar yield is 79.7% obtained at a ratio of substrate-enzyme of 1:2.5 (w/w) for 48 hours of hydrolysis time, with the result of reducing sugar concentration is 16.2043 mg/mL.


Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 787 ◽  
Author(s):  
Saleem Ethaib ◽  
Rozita Omar ◽  
Mustapa Kamal Siti Mazlina ◽  
Awang Biak Dayang Radiah

This study aims to evaluate the sugar yield from enzymatic hydrolysis and the interactive effect pretreatment parameters of microwave-assisted pretreatment on glucose and xylose. Three types of microwave-assisted pretreatments of sago palm bark (SPB) were conducted for enzymatic hydrolysis, namely: microwave-sulphuric acid pretreatment (MSA), microwave-sodium hydroxide pretreatment (MSH), and microwave-sodium bicarbonate (MSB). The experimental design was done using a response surface methodology (RSM) and Box–Behenken Design (BBD). The pretreatment parameters ranged from 5–15% solid loading (SL), 5–15 min of exposure time (ET), and 80–800 W of microwave power (MP). The results indicated that the maximum total reducing sugar was 386 mg/g, obtained by MSA pretreatment. The results also illustrated that the higher glucose yield, 44.3 mg/g, was found using MSH pretreatment, while the higher xylose yield, 43.1 mg/g, resulted from MSA pretreatment. The pretreatment parameters MP, ET, and SL showed different patterns of influence on glucose and xylose yield via enzymatic hydrolysis for MSA, MSH, and MSB pretreatments. The analyses of the interactive effect of the pretreatment parameters MP, ET, and SL on the glucose yield from SPB showed that it increased with the high MP and longer ET, but this was limited by low SL values. However, the analysis of the interactive effect of the pretreatment parameters on xylose yields revealed that MP had the most influence on the xylose yield for MSA, MSH, and MSB pretreatments.


2021 ◽  
Author(s):  
Hui Zhang ◽  
Junhui Wu

Abstract To maximize fermentable sugars production, response surface methodology (RSM) was adopted to optimize pretreatment and enzymatic hydrolysis of wheat straw powder (WSP) using the crude cellulases preparation containing xylanases from Aspergillus niger HQ-1. Factors of pretreatment including sodium hydroxide concentration, pretreatment time and temperature were found to have significant effects on sugars production. Results indicated that WSP with particle size 0.3 mm should be pretreated using 1.8% (w/v) sodium hydroxide solution with 25.0% (w/v) of solid loading at 94.0°C for 46.0 min and the optimized pretreatment conditions could result in 90.9% of cellulose recovery, 54.6% of hemicellulose recovery and 72.7% of lignin removal, respectively. Furthermore, variables of enzymatic hydrolysis including enzyme loading, biomass loading and reaction time were proved to have significant effects on sugars yields. After hydrolysis at 50°C for 44.8 h with 7.1% (w/v) of biomass loading, 8.1 FPU/g of enzyme loading and 0.2% (w/v) of Tween-80, maximum yields of reducing sugar (632.92 mg/g) and xylose (149.83 mg/g) could be obtained, respectively. In addition, holocellulose and hemicellulose conversion were 81.6% and 80.0%, respectively. To the best of our knowledge, this is the first report about systematic optimization of sodium hydroxide pretreatment and enzymatic hydrolysis of WSP using RSM.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7591
Author(s):  
Pedro M. A. Pereira ◽  
Joana R. Bernardo ◽  
Luisa Bivar Roseiro ◽  
Francisco Gírio ◽  
Rafał M. Łukasik

Biomass pre-treatment is a key step in achieving the economic competitiveness of biomass conversion. In the present work, an imidazole pre-treatment process was performed and evaluated using wheat straw and eucalyptus residues as model feedstocks for agriculture and forest-origin biomasses, respectively. Results showed that imidazole is an efficient pre-treatment agent; however, better results were obtained for wheat straw due to the recalcitrant behavior of eucalyptus residues. The temperature had a stronger effect than time on wheat straw pre-treatment but at 160 °C and 4 h, similar results were obtained for cellulose and hemicellulose content from both biomasses (ca. 54% and 24%, respectively). Lignin content in the pre-treated solid was higher for eucalyptus residues (16% vs. 4%), as expected. Enzymatic hydrolysis, applied to both biomasses after different pre-treatments, revealed that results improved with increasing temperature/time for wheat straw. However, these conditions had no influence on the results for eucalyptus residues, with very low glucan to glucose enzymatic hydrolysis yield (93% for wheat straw vs. 40% for eucalyptus residues). Imidazole can therefore be considered as a suitable solvent for herbaceous biomass pre-treatment.


2022 ◽  
Author(s):  
Simarpreet Kaur Chawla ◽  
Dinesh Goyal

Abstract Thermotolerant lactic acid producing bacteria, isolated from red soil of brick kiln was identified by 16S rRNA sequencing as Bacillus sonorenesis , which showed remarkable capability to ferment sugars of lignocellulosic biomass after pre-treatment, yielding 0.97 g/g lactic acid with overall productivity of 0.38 g L -1/ h. RSM was employed to optimize the sulphuric acid pre-treatment combined with dilute NaOH and hot water pre-treatment. Pretreated wheat straw biomass had 40.4% cellulose, 18.4% hemicellulose, 12.4% lignin and 28.2 g L -1 reducing sugar, while native wheat straw biomass had 36% cellulose, 25% hemicellulose, 20% total lignin, and 0.94 g L -1 reducing sugar. Scanning electron microscopy (SEM) revealed that the ordered and compact structure of wheat straw was destroyed upon pre-treatment. X-ray diffractogram (XRD) revealed 9.71% increase in crystallinity index ( CrI ) in pretreated biomass. FTIR spectrogram showed removal of lignin due to reduction of peak at 1640 cm -1 in pretreated biomass. Bacillus sonorenesis DGS15 is inhibitor tolerant (furfural (1.2 g L -1 ) and HMF (2.4 g L -1 )). Furfural was consumed after 72 h of fermentation and HMF got accumulated with 3.75-fold increase in concentration in the fermentation broth. In terms of final concentration, yield, and fermentation duration, this is the best performance of DGS15 for lactic acid production utilizing xylose, glucose as the carbon source. All of these findings showed that the thermotolerant Bacillus sonorenesis strain DGS15 is a novel, attractive candidate for producing lactic acid from lignocellulosic biomass.


2006 ◽  
Vol 94 (3) ◽  
pp. 437-442 ◽  
Author(s):  
Shengdong Zhu ◽  
Yuanxin Wu ◽  
Ziniu Yu ◽  
Qiming Chen ◽  
Guiying Wu ◽  
...  

2018 ◽  
Vol 156 ◽  
pp. 01009
Author(s):  
Hargono Hargono ◽  
Andri Cahyo Kumoro ◽  
Bakti Jos

The effect of compositions of bitter cassava (Manihot glaziovii) and gadung (Dioscorea hispida Dennst) starches on reducing sugar during hydrolysis using granular starch hydrolyzing enzyme (GSHE) was studied. All hydrolyses were conducted at concentration of substrate was 200 g.L-1, while concentration of enzyme was 1.5 % (w/w), during of hydrolysis time 24 h, at 30°C. Mass compositition of bitter cassava and gadung starches were 9:1 to 1:9 The increase gadung starch compositions will decrease the reducing sugar. The optimum condition of the process using concentration of substrate 200 g.L-1 with compositions of bitter cassava and gadung starches was 9:1 at 18 h. It was found that reducing sugar was 50.20 g.L-1. The concentration of reducing sugar mainly depend on starch content on bitter cassava, it is much bigger than the gadung starch.


2013 ◽  
Vol 690-693 ◽  
pp. 1198-1202 ◽  
Author(s):  
Hui Chen ◽  
Lian Jie Wang ◽  
Tao Zhang ◽  
Meng Yu ◽  
Xin Ming Wang

The article used acid protease to remove the protein in wheat straw, and investigated the influence of wheat straw without the protein to enzymatic hydrolysis. By the single factor experiments, the cellulose degradation rate of wheat straw removed the protein was significantly higher than untreated, in the same conditions of enzymatic hydrolysis. It is shortening 24h of enzymatic hydrolysis time and reducing enzyme dosage 90mg/g. By the orthogonal experiments, the optimal reaction conditions for enzymatic hydrolysis of wheat straw with protein removed is the cellulase dosage 170mg, enzymatic time 56h, solid-liquid ratio 1:20, pH 4.8, the reaction temperature 50°C. Compared to the untreated, the cellulose degradation rate increased by 35.58%.


Sign in / Sign up

Export Citation Format

Share Document