A Variational Method for Fully Developed Laminar Heat Transfer in Ducts

1959 ◽  
Vol 81 (2) ◽  
pp. 157-164 ◽  
Author(s):  
E. M. Sparrow ◽  
R. Siegel

A variational method is presented for determining fully developed velocity and temperature distributions for laminar flow in noncircular ducts. The heat addition to the fluid is taken to be uniform in the axial direction, but a variety of thermal boundary conditions are considered around the periphery of the duct cross section. Several illustrative examples are given, and comparisons are made which show good agreement with available exact solutions. These examples include ducts of rectangular and circular-sector cross sections.

1966 ◽  
Vol 88 (4) ◽  
pp. 351-357 ◽  
Author(s):  
E. M. Sparrow ◽  
A. Haji-Sheikh

A computation-oriented method of analysis is presented for determining closed-form solutions for fully developed laminar flow and heat transfer in ducts of arbitrary cross section. The analytical method can accommodate both uniform and circumferentially varying thermal boundary conditions. The solutions provide information for local quantities such as the velocity and the temperature distributions as well as for overall quantities such as the friction factor and the Nusselt number. As an application of the method, solutions are presented for flow and for heat transfer in ducts of circular-segment cross section, a configuration that is of current interest in space technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Maslina Yaacob ◽  
Mohd Haniff Ibrahim ◽  
Norazan Mohd Kassim ◽  
Abu Bakar Mohammad

In this paper, the analysis of thermal distribution in planar optical waveguide cross-section when a single heater electrode applied is presented. Starting from the heat equation, the thermal analysis has been done using two proposed numerical methods which are include finite difference method (FDM) and finite element method (FEM). By considering conduction as the only heat transfer mechanism, the obtained results from the mentioned methods are shown to have a good agreement.


2005 ◽  
Vol 127 (3) ◽  
pp. 352-356 ◽  
Author(s):  
Michael W. Egner ◽  
Louis C. Burmeister

Laminar flow and heat transfer in three-dimensional spiral ducts of rectangular cross section with aspect ratios of 1, 4, and 8 were determined by making use of the FLUENT computational fluid dynamics program. The peripherally averaged Nusselt number is presented as a function of distance from the inlet and of the Dean number. Fully developed values of the Nusselt number for a constant-radius-of-curvature duct, either toroidal or helical with small pitch, can be used to predict those quantities for the spiral duct in postentry regions. These results are applicable to spiral-plate heat exchangers.


1962 ◽  
Vol 29 (4) ◽  
pp. 609-614 ◽  
Author(s):  
C. J. Cremers ◽  
E. R. G. Eckert

Previous studies by flow visualization have indicated that the flow through a duct of triangular cross section is in its characteristics quite different from flow through a duct with circular cross section. They revealed among others that purely laminar flow exists in the corners of the duct even though the bulk of the fluid moves in turbulent motion. Heat-transfer measurements in such a duct appear to indicate that the turbulent transport in the direction of the height of the duct is considerably smaller than expected from circular tube measurements. The present paper reports the measurements of turbulent correlations for turbulent flow through such a duct. These measurements have been made with hot wires of very small dimensions. They again reveal the existence of a laminar corner region. In the bulk of the fluid, the differences of the correlations to those in a round tube turned out to be smaller than originally suspected.


Sign in / Sign up

Export Citation Format

Share Document