Inkjet Printing of Radio Frequency Electronics: Design Methodologies and Application of Novel Nanotechnologies

2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Taoran Le ◽  
Ziyin Lin ◽  
Rushi Vyas ◽  
Vasileios Lakafosis ◽  
Li Yang ◽  
...  

We discuss here the use of inkjet printing technology as an attractive alternative for the fabrication of radio frequency (RF) electronics. Inkjet printing is compared to widely-used traditional methods such as wet etching and mechanical milling with discussion of the advantages and potential disadvantages afforded by the technology. Next the paper presents the current state of the art for RF printed electronics, including fundamental fabrication technologies, methodologies, and materials. Included are detailed discussions of the fabrication of foundational conductive elements, integration of external elements via low temperature bonding techniques, and enhancement strategies focusing on the addition of novel materials. We then present some current challenges related to inkjet printing, along with some exciting recent advances in materials technology seeking to overcome the current limitations and to expand the frontier of the technology. Following are multiple examples detailing the successful use of inkjet printing methods in the creation of novel RF devices, providing proof of concept and illustrating in greater detail the concepts presented in the theoretical sections.

2006 ◽  
Vol 21 (7) ◽  
pp. 1359-1364 ◽  
Author(s):  
J. Chance Carter ◽  
Rosa M. Alvis ◽  
Steve B. Brown ◽  
Kevin C. Langry ◽  
Thomas S. Wilson ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1636 ◽  
Author(s):  
Sangkil Kim

The newly developed research area of inkjet-printed radio frequency (RF) electronics on cellulose-based and synthetic paper substrates is introduced in this paper. This review paper presents the electrical properties of the paper substrates, the printed silver nanoparticle-based thin films, the dielectric layers, and the catalyst-based metallization process. Numerous inkjet-printed microwave passive/ative systems on paper, such as a printed radio frequency identification (RFID) tag, an RFID-enabled sensor utilizing carbon nanotubes (CNTs), a substrate-integrated waveguide (SIW), fully printed vias, an autonomous solar-powered beacon oscillator (active antenna), and artificial magnetic conductors (AMC), are discussed. The reported technology could potentially act as the foundation for true “green” low-cost scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.


2021 ◽  
Vol 23 (6) ◽  
pp. 306-312
Author(s):  
I.V. Mandrik ◽  
◽  
V.A. Startsev ◽  
O.S. Bokhov ◽  
A.V. Pudova ◽  
...  

Flexible printed electronics and photonics technologies are in demand because they are cost-effective and quickly reconfigurable. Zinc-silver battery can help towards development of body conformal wearable electronics. The study evaluate planar sec-ondary Ag2O-Zn battery fabricated using the inkjet printing technology. Polyethylene naphthalate (PEN) is used as polymer substrate and carbon nanotubes material is used as current collectors. The demonstrated battery achieves an capacity of 4 mAh with active electrode area of 14 cm2 and thickness of 0.2 mm.


Author(s):  
J. Gaudestad ◽  
V. Talanov ◽  
A. Orozco ◽  
M. Marchetti

Abstract In the past couple years, Space Domain Reflectometry (SDR) has become a mainstream method to locate open defects among the major semiconductor manufacturers. SDR injects a radio frequency (RF) signal into the open trace creating a standing wave with a node at the open location. The magnetic field generated by the standing wave is imaged with a SQUID sensor using RF electronics. In this paper, we show that SDR can be used to non-destructively locate high resistance failures in Micro LeadFrame Packages (MLP).


2020 ◽  
Vol 36 ◽  
pp. 101544
Author(s):  
Devin J. Roach ◽  
Christopher Roberts ◽  
Janet Wong ◽  
Xiao Kuang ◽  
Joshua Kovitz ◽  
...  

Author(s):  
Xueli Wang ◽  
Yufeng Zhang ◽  
Hongxin Zhang ◽  
Xiaofeng Wei ◽  
Guangyuan Wang

Abstract For wireless transmission, radio-frequency device anti-cloning has become a major security issue. Radio-frequency distinct native attribute (RF-DNA) fingerprint is a developing technology to find the difference among RF devices and identify them. Comparing with previous research, (1) this paper proposed that mean (μ) feature should be added into RF-DNA fingerprint. Thus, totally four statistics (mean, standard deviation, skewness, and kurtosis) were calculated on instantaneous amplitude, phase, and frequency generated by Hilbert transform. (2) We first proposed using the logistic regression (LR) and support vector machine (SVM) to recognize such extracted fingerprint at different signal-to-noise ratio (SNR) environment. We compared their performance with traditional multiple discriminant analysis (MDA). (3) In addition, this paper also proposed to extract three sub-features (amplitude, phase, and frequency) separately to recognize extracted fingerprint under MDA. In order to make our results more universal, additive white Gaussian noise was adopted to simulate the real environment. The results show that (1) mean feature conducts an improvement in the classification accuracy, especially in low SNR environment. (2) MDA and SVM could successfully identify these RF devices, and the classification accuracy could reach 94%. Although the classification accuracy of LR is 89.2%, it could get the probability of each class. After adding a different noise, the recognition accuracy is more than 80% when SNR≥5 dB using MDA or SVM. (3) Frequency feature has more discriminant information. Phase and amplitude play an auxiliary but also pivotal role in classification recognition.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 220
Author(s):  
Mahmuda Akter Monne ◽  
Chandan Qumar Howlader ◽  
Bhagyashree Mishra ◽  
Maggie Yihong Chen

Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates the synthesis of PVA solution for 2.5% w/w, 4.5% w/w, 6.5% w/w, 8.5% w/w and 10.5% w/w aqueous solution was formulated. Then the properties of the ink, such as viscosity, contact angle, surface tension, and printability by inkjet and aerosol jet printing, were investigated. The wettability of the ink was investigated on flexible (Kapton) and non-flexible (Silicon) substrates. Both were identified as suitable substrates for all concentrations of PVA. Additionally, we have shown aerosol jet printing (AJP) and inkjet printing (IJP) can produce multi-layer PVA structures. Finally, we have demonstrated the use of PVA as sacrificial material for micro-electro-mechanical-system (MEMS) device fabrication. The dielectric constant of printed PVA is 168 at 100 kHz, which shows an excellent candidate material for printed or traditional transistor fabrication.


Author(s):  
Shikhar P. Acharya ◽  
Ivan G. Guardiola

Radio Frequency (RF) devices produce some amount of Unintended Electromagnetic Emissions (UEEs). UEEs are generally unique to a device and can be used as a signature for the purpose of detection and identification. The problem with UEEs is that they are very low in power and are often buried deep inside the noise band. The research herein provides the application of Support Vector Machine (SVM) for detection and identification of RF devices using their UEEs. Experimental Results shows that SVM can detect RF devices within the noise band, and can also identify RF devices using their UEEs.


Sign in / Sign up

Export Citation Format

Share Document