scholarly journals Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle

Author(s):  
K. El Majdoub ◽  
F. Giri ◽  
H. Ouadi ◽  
F. Z. Chaoui

The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

Author(s):  
Irfan Khan ◽  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Nicola Amati

Abstract This paper presents a controller dedicated to the lateral and longitudinal vehicle dynamics control for autonomous driving. The proposed strategy exploits a Model Predictive Control strategy to perform lateral guidance and speed regulation. To this end, the algorithm controls the steering angle and the throttle and brake pedals for minimizing the vehicle’s lateral deviation and relative yaw angle with respect to the reference trajectory, while the vehicle speed is controlled to drive at the maximum acceptable longitudinal speed considering the adherence and legal speed limits. The technique exploits data computed by a simulated camera mounted on the top of the vehicle while moving in different driving scenarios. The longitudinal control strategy is based on a reference speed generator, which computes the maximum speed considering the road geometry and lateral motion of the vehicle at the same time. The proposed controller is tested in highway, interurban and urban driving scenarios to check the performance of the proposed method in different driving environments.


2013 ◽  
Vol 431 ◽  
pp. 241-246
Author(s):  
Yi Chen ◽  
Jun Liu

The distributed drive electric vehicle was studied in this paper. According to the advantages of the controllable and accurate wheel speed and torque the ideal differential assisted characteristic curve was designed under different vehicle speed as well as a control strategy for differential power steering, a vehicle dynamics model based on CarSim/Simulink and simulation experiments were conducted. The experimental results indicated that on the premise to guarantee the road feeling, the control strategy for differential power steering decreased the steering wheel torque, angle and reduced driver's work-load , improved markedly the steering portability of the distributed drive electric vehicle.


2015 ◽  
Vol 734 ◽  
pp. 327-331
Author(s):  
Li Zou ◽  
Feng Luo

This paper designs a longitudinal controller for a magnetic navigation unmanned electric vehicle to obtain desired values for speed tracking. The motion control algorithm is proposed using PID control via fuzzy logic for PID parameters online adjusting. A switch strategy is designed to guarantee the smooth switching between the drive actuator and the brake one. The vehicle is a modification of an electric sightseeing car. A simple model of a typical front drive car for vehicle dynamics control system is built to help the design of the controller. The road test results demonstrated that the longitudinal controller provided high tracking accuracy and strong robustness.


In this paper, a new controll structure are proposed to sensorless vector control the in-wheel motordrive system of Electric Vehicle (EV) to improve its performance and robustness. The design of the controlleris based on Backstepping and Hamitolnion control combined with a improved stator current MRAS adaptivespeed observer proposed to estimate the vehicle speed and it also can compensate for the uncertainties causedby the machine parameter variations, measurement errors, and load disturbances, improving dynamicperformance and enhancing the robustness of the SPIM drive system, perfect tuning of the speed referencevalues, fast response of the motor current and torque, high accuracy of speed regulation. A global EV model isalso evaluated based on the vehicle dynamics in this paper. The simulation results lead to the conclusion thatthe proposed system for the propulsion system of electric vehicle is feasible. The simulation results on a testvehicle propelled by two SPIM showed that the proposed control approach operates satisfactorily


Author(s):  
Tom Partridge ◽  
Lorelei Gherman ◽  
David Morris ◽  
Roger Light ◽  
Andrew Leslie ◽  
...  

Transferring sick premature infants between hospitals increases the risk of severe brain injury, potentially linked to the excessive exposure to noise, vibration and driving-related accelerations. One method of reducing these levels may be to travel along smoother and quieter roads at an optimal speed, however this requires mass data on the effect of roads on the environment within ambulances. An app for the Android operating system has been developed for the purpose of recording vibration, noise levels, location and speed data during ambulance journeys. Smartphone accelerometers were calibrated using sinusoidal excitation and the microphones using calibrated pink noise. Four smartphones were provided to the local neonatal transport team and mounted on their neonatal transport systems to collect data. Repeatability of app recordings was assessed by comparing 37 journeys, made during the study period, along an 8.5 km single carriageway. The smartphones were found to have an accelerometer accurate to 5% up to 55 Hz and microphone accurate to 0.8 dB up to 80 dB. Use of the app was readily adopted by the neonatal transport team, recording more than 97,000 km of journeys in 1 year. To enable comparison between journeys, the 8.5 km route was split into 10 m segments. Interquartile ranges for vehicle speed, vertical acceleration and maximum noise level were consistent across all segments (within 0.99 m . s−1, 0.13 m · s−2 and 1.4 dB, respectively). Vertical accelerations registered were representative of the road surface. Noise levels correlated with vehicle speed. Android smartphones are a viable method of accurate mass data collection for this application. We now propose to utilise this approach to reduce potential harmful exposure, from vibration and noise, by routing ambulances along the most comfortable roads.


2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Sébastien Laurent ◽  
Laurence Paire-Ficout ◽  
Jean-Michel Boucheix ◽  
Stéphane Argon ◽  
Antonio Hidalgo-Muñoz

The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 505
Author(s):  
Jianfeng Chen ◽  
Jiantian Sun ◽  
Shulin Hu ◽  
Yicai Ye ◽  
Haoqian Huang ◽  
...  

A variety of accurate information inputs are of great importance for automotive control. In this paper, a novel joint soft-sensing strategy is proposed to obtain multi-information under diverse vehicle driving scenarios. This strategy is realized by an information interaction including three modules: vehicle state estimation, road slope observer and vehicle mass determination. In the first module, a variational Bayesian-based adaptive cubature Kalman filter is employed to estimate the vehicle states with the time-variant noise interference. Under the assumption of road continuity, a slope prediction model is proposed to reduce the time delay of the road slope observation. Meanwhile, a fast response nonlinear cubic observer is introduced to design the road slope module. On the basis of the vehicle states and road slope information, the vehicle mass is determined by a forgetting-factor recursive least square algorithm. In the experiments, a contrasted strategy is introduced to analyse and evaluate performance. Results declare that the proposed strategy is effective and has the advantages of low time delay, high accuracy and good stability.


2012 ◽  
Author(s):  
Haley M. Moore ◽  
Bryan Whitney Belt ◽  
Christopher Rhoades ◽  
Ashish Vora ◽  
Haotian Wu ◽  
...  

2013 ◽  
Vol 336-338 ◽  
pp. 734-737
Author(s):  
Hong Yu Zheng ◽  
Ya Ning Han ◽  
Chang Fu Zong

In order to solve the problem of road feel feedback of vehicle steer-by-wire (SBW) system based on joystick, a road feel control strategy was established to analyze the road feel theory of traditional steer system, which included return, assist and damp control module. By verifying the computer simulation results with the control strategy from software of CarSim and Matlab/Simulink, it shows that the proposed strategy can effective get road feel in different vehicle speed conditions and could improve the vehicle maneuverability to achieve desired steering feel by different drivers.


Sign in / Sign up

Export Citation Format

Share Document