A Compartmental Model for Supercritical Coal-Fired Boiler Systems

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Longzhou Qi ◽  
Shuhong Huang ◽  
Yanping Zhang ◽  
Xing Xu ◽  
Yu Li ◽  
...  

A compartmental furnace model for supercritical coal-fired boiler systems is presented in this paper. Instead of the traditional lumped parameter method, the furnace is divided to seven compartments along the height based on the positions of the burner groups. The lower six compartments correspond to the six groups of burners, respectively. This model provides the possibility to connect the pulverization system and the furnace, the variability of the combustion property caused by changes of the pulverization system can be studied by switching the operating conditions. To evaluate the proposed model, simulation results are compared with available data from a 600 MW supercritical coal-fired boiler and reasonably good agreement is achieved. The simulation results also show that the compartmental model features a better precision than the lumped parameter modeling. This model allows for evaluating different control strategies and subsequently proposing optimization strategies for boiler system operation.

2017 ◽  
Vol 12 (5) ◽  
Author(s):  
Juan Carlos García Orden ◽  
Javier Cuenca Queipo

This paper describes a very simple beam model, amenable to be used in multibody applications, for cases where the effects of torsion and shear are negligible. This is the case of slender rods connecting different parts of many space mechanisms, models useful in polymer physics, computer animation, etc. The proposed new model follows a lumped parameter method that leads to a rotation-free formulation. Axial stiffness is represented by a standard nonlinear truss model, while bending is modeled with a force potential. Several numerical experiments are carried out in order to assess accuracy, which is usually the main drawback of this type of approach. Results reveal a remarkable accuracy in nonlinear dynamical problems, suggesting that the proposed model is a valid alternative to more sophisticated approaches.


Author(s):  
Yongtao Zhang ◽  
Shijie Yu ◽  
Changhou Lu ◽  
Haixia Zhao ◽  
Peng Liang

This paper proposes an improved lumped parameter method for calculating the static characteristics of multi-recess hydrostatic journal bearings. The improved lumped parameter method can estimate the total pressure distribution in the circumferential direction by introducing control volume in the middle of each inter-recess land, and utilizing the flow continuity equations for each recess and each control volume with the assumption that the pressure distributions are parabolic on the inter-recess land. Then the recess pressure and the fluid film force can be calculated. The calculation accuracy of the improved lumped parameter method and the traditional lumped parameter method is comparatively discussed under different eccentricity ratios and wrap angles of the recess. The results show that the improved lumped parameter method has higher calculation accuracy and wider application range.


2020 ◽  
Vol 10 (3) ◽  
pp. 866
Author(s):  
Yuan-Wu Jiang ◽  
Dan-Ping Xu ◽  
Zhi-Xiong Jiang ◽  
Jun-Hyung Kim ◽  
Ki-Hong Park ◽  
...  

Micro speakers are playing an increasingly important role with the development of multimedia devices. This study applies the lumped-parameter method, which uses an equivalent circuit to model the electromagnetic and mechanical domains. The acoustic domain is modeled using the finite element method. Based on the analysis tool, the use of a screen is analyzed, and the screen is designed to depress the acoustic resonance in the sound-pressure-level curve and improve the performance. The samples are fabricated, and the experiment verifies the analysis method. The experimental result shows that the peak and dip due to the standing wave are cancelled, and the frequency response is smooth when the screen is used.


2019 ◽  
Vol 9 (12) ◽  
pp. 2541 ◽  
Author(s):  
Yuan-Wu Jiang ◽  
Dan-Ping Xu ◽  
Zhi-Xiong Jiang ◽  
Jun-Hyung Kim ◽  
Sang-Moon Hwang

With the development of multimedia devices, earphones are playing an increasingly important role. This article applies the lumped parameter method using an equivalent circuit to model the electromagnetic, mechanical, and acoustic domains of earphones. Then, parameters are determined according to the dimensions and material properties of earphone parts. On the basis of the analysis tool and determined parameters, a Helmholtz protector is analyzed and designed to improve the high-frequency response. Samples are fabricated, and the experiment verifies the analysis method. The experimental result shows that the peaks at 7 k and 10 k are decreased at 8.05 dB and 7.89 dB. The root means square value of SPL deviation compared with target curve decreased from 9.77 to 4.39. High-frequency response is improved by using the Helmholtz protector.


Author(s):  
Brian Sperry ◽  
Corina Sandu ◽  
Brent Ballew

This research focuses on the dynamic behavior of the three-piece bogie that supports the freight train car bodies. While the system is relatively simple, in that there are very few parts involved, the behavior of the bogie is somewhat more complex. Our research focuses primarily on the behavior of the friction wedges under different operating conditions that are seen under normal operation. The Railway Technologies Laboratory (RTL) at Virginia Tech has been developing a model to better capture the dynamic behavior of friction wedges using 3-D modeling software. In previous years, a quarter-truck model, and half-truck variably damped model have been developed using MathWorks MATLAB®. This year, research has focused on the development of a half-truck variably damped model with a new (curved surface) friction wedge, and a half-truck constantly damped model, both using the MATLAB® based software program. Currently a full-truck variably damped model has been created using LMS Virtual.Lab. This software allows for a model that is more easily created and modified, as well as allowing for a much shorter simulation time, which became a necessity as more contact points, and more complex inputs were needed to increase the accuracy of the simulation results. The new model consists of seven rigid bodies: the bolster, two sideframes, and four wedges. We have also implemented full spring nests on each sideframe, where in previous models equivalent spring forces were used. The model allows six degrees-of-freedom for the wedges and bolster: lateral, longitudinal, and vertical translations, as well as pitch, roll, and yaw. The sideframes are constrained to two degrees-of-freedom: vertical and longitudinal translations. The inputs to the model are vertical and longitudinal translations or forces on the sideframes, which can be set completely independent of each other. The model simulation results have been compared with results from NUCARS®, an industrially-used train modeling software developed by the Transportation Technology Center, Inc. (TTCI), a wholly owned subsidiary of the Association of American Railroads (AAR), for similar inputs, as well as experimental data from warping tests performed at TTCI.


2013 ◽  
Vol 655-657 ◽  
pp. 1296-1299
Author(s):  
Li Juan Yu ◽  
Zhao Jun Yang ◽  
Fu You Liu

Gear machine tool main drive shaft to avoid resonance problem is studied.The force of the drive shaft is analyzed, and the vibration form of the drive shaft is confirmed. Using the lumped parameter method to simplify the main drive shaft, the lumped mass model and the force model were been obtained. When bending vibrating, the natural frequency of the main drive shaft is calculated using the transfer matrix method. The calculated critical speed is 43755r/min, which far outweighs the motor rated speed .It means that the drive shaft under normal work won't be resonance, which accords with the request of production.


Sign in / Sign up

Export Citation Format

Share Document