Structural Life Expectancy of Marine Vessels: Ultimate Strength, Corrosion, Fatigue, Fracture, and Systems

Author(s):  
Bilal M. Ayyub ◽  
Karl A. Stambaugh ◽  
Timothy A. McAllister ◽  
Gilberto F. de Souza ◽  
David Webb

This paper provides a methodology for the structural reliability analysis of marine vessels based on failure modes of their hull girders, stiffened panels including buckling, fatigue, and fracture and corresponding life predictions at the component and system levels. Factors affecting structural integrity such as operational environment and structural response entail uncertainties requiring the use of probabilistic methods to estimate reliabilities associated with various alternatives being considered for design, maintenance, and repair. Variability of corrosion experienced on marine vessels is a specific example of factors affecting structural integrity requiring probabilistic methods. The Structural Life Assessment of Ship Hulls (SLASH) methodology developed in this paper produces time-dependent reliability functions for hull girders, stiffened panels, fatigue details, and fracture at the component and system levels. The methodology was implemented as a web-enabled, cloud-computing-based tool with a database for managing vessels analyzed with associated stations, components, details, and results, and users. Innovative numerical and simulation methods were developed for reliability predictions with the use of conditional expectation. Examples are provided to illustrate the computations.

Author(s):  
Gianluca Mannucci ◽  
Giuliano Malatesta ◽  
Giuseppe Demofonti ◽  
Marco Tivelli ◽  
Hector Quintanilla ◽  
...  

Nowadays specifications require strict Yield to Tensile ratio limitation, nevertheless a fully accepted engineering assessment of its influence on pipeline integrity is still lacking. Probabilistic analysis based on structural reliability approach (Limit State Design, LSD) aimed at quantifying the yield to tensile strength ratio (Y/T) influence on failure probabilities of offshore pipelines was made. In particular, Tenaris seamless pipe data were used as input for the probabilistic failure analysis. The LSD approach has been applied to two actual deepwater design cases that have been on purpose selected, and the most relevant failure modes have been considered. Main result of the work is that the quantitative effect of the Y/T ratio on failure probabilities of a deepwater pipeline resulted not so big as expected; it has a minor effect, especially when Y only governs failure modes.


Statistical variations in input parameters that affect structural reliability have historically been incorporated approximately in engineering designs by application of safety factors. Increased concerns over the injury potential and costs of licensing, insurance, field repairs or recalls, and product liability claims now demand more quantitative evaluation of possible flaws or unusual usage conditions that might result from statistical variations or uncertainties. This paper describes the basic concepts of probabilistic fracture mechanics that are used to assess and control risk. Recent developments in combined analysis methods are presented that utilize field experience data with probabilistic analysis to improve the accuracy of the structural integrity predictions. Several specific examples are described that illustrate how these probabilistic methods are used to assess risk and to provide a quantitative basis for establishing design, operation or maintenance allowables. These procedures, which realistically model the actual statistical variations that exist, can eliminate unnecessarily conservative approximations and often achieve improved reliability at reduced cost.


Author(s):  
O̸istein Hagen ◽  
Gunnar Solland ◽  
Jan Mathisen

Offshore platform resistance to cyclic storm actions is addressed. In order to achieve the best economy of the structure especially when assessing existing structures, the ultimate capacity of the structure is utilized. This means that parts of the structure may be loaded into the non-linear range and consequently the load-carrying resistance of the structure against future load cycles may be reduced. In such cases it is required to carry out a check of the cyclic capacity of the structure. Such checks are required in the ISO 19902 code for Fixed Steel Offshore Structures. The paper presents a proposal for how a load history for cyclic checks can be established. The method is in line with what is included in the NORSOK N-006 standard on “Assessment of structural integrity for existing load-bearing structures”. The load-history for the waves in the design storm may be expressed as ratio of the dimensioning wave. The ratio will be different for check of failure modes where the entire storm will be relevant such as crack growth, compared to failure modes like buckling where only the remaining waves after the dimensioning wave need to be accounted for. Using simple order statistics and simulation, the statistics for the ith (Hi), i = 1, 2, 3, 4 etc. highest wave in the storm is studied in some detail, assuming that the maximum wave (H1) is equal to an extreme wave obtained by a code requirement. Environmental contours for the pair (H1,H2) are established by Inverse FORM for design conditions. Further, the long term statistics for load effects that are expressed as a function of H1, .., H4, i.e. L = f(H1, .., H4), are determined. The R-year value LR for the load effect L is determined by structural reliability techniques, and the most probable combination (design point) (H1*, .., H4*) for L = LR is determined. The design point values Hi*, as well as the design point value for the significant wave height, are determined for different load effects, and their characteristics for different types of load effects are discussed. The paper gives advice also on how to establish the magnitude for the remaining waves in the storm.


Author(s):  
Min Wang ◽  
Xianxun Yuan ◽  
Xinjian Duan ◽  
Michael J. Kozluk

Wall thinning is one of the most common degradation mechanisms experienced in piping system. Gradual wall thinning can cause the pipe to leak or in the worst scenario, to rupture. Wall thinning due to FAC of feeder pipe in CANDU® reactors has been identified as an active degradation mechanism, and local thinning has been observed in various locations such as elbows/bends and Grayloc. The assessment of structural integrity is important for the fitness-for-service of those feeders whose wall thickness is predicted to be lower than the required minimum wall thickness before their design life and therefore subject to costly repair or replacement. Among various probabilistic methods, the first-order reliability method (FORM) is adopted in this paper to evaluate the structural reliability of feeders subject to wall thinning, while the wall thickness, one of the key parameters in the reliability analysis, is modeled by three methods based on the wall thickness measurements. They are linear regression analysis, random thinning rate analysis and gamma process modeling. The difference and limitation of the methods for reliability analysis are addressed.


Author(s):  
Andrew Francis ◽  
Mike Gardiner ◽  
Marcus McCallum

Pipeline designers and operators recognize that the commercial viability of operating high-pressure gas pipelines decreases with time. This is because the structural integrity levels of the pipeline decrease, due to the action of deterioration processes such as corrosion and fatigue, until the level of mitigation required to ensure adequate safety levels becomes uneconomical. For this reason pipelines are assigned a nominal design life of typically 40 years. This paper describes the application of structural reliability analysis to a high-pressure natural gas pipeline having both onshore and offshore sections, in order to determine the extent to which the asset life could be increased beyond the design life without any significant reduction in reliability and hence safety levels. The approach adopted was to identify the credible failure modes that could affect each of the onshore and offshore sections and determine the probability of failure due to each failure mode taking account of the uncertainties in the parameters that affect each mode. Based on a detailed consideration of the results of the study it was concluded that the life of the asset considered here could be extended to 60 years without any significant reduction in safety levels. Moreover, it was concluded that if certain mitigating measures were to be implemented in the future then it would be possible to increase the asset life to significantly more than 60 years.


2009 ◽  
Vol 2009 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Krzysztof Dragan ◽  
Piotr Synaszko

In-Service Flaw Detection and Quantification in the Composite Structures of Aircraft Taking into consideration the increased usage of composites for aircraft structures there is a necessity for gathering information about structural integrity of such components. During the manufacturing of composites as well as during in service and maintenance procedures there is a possibility for damage occurrence. There is a large number of failure modes which can happen in such structures. These failure modes affect structural integrity and durability. In this work modern approach for detection of composites damage detection such as: delaminations, disbonds, foreign object inclusion and core damage has been presented. This detection is possible with the use of advanced P-C aided Non Destructive Testing methods. In the article nondestructive testing results for the composite vertical tail skins on MiG-29 aircraft will be delivered as well as some results of F-16 horizontal stabilizer and W-3 helicopter main rotor blades. Moreover some results of the composite honeycomb and sandwich structures will be presented based on the materials used in the construction of gliders and small aircraft. Factors affecting structural integrity and durability of the composites will be highlighted as well as necessity of the inspection with the use of modern NDT techniques. At the end some effort with Structural Health Monitoring connected with possibility of condition monitoring of composites will be presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Rita Greco ◽  
Francesco Trentadue

Response sensitivity evaluation is an important element in reliability evaluation and design optimization of structural systems. It has been widely studied under static and dynamic forcing conditions with deterministic input data. In this paper, structural response and reliability sensitivities are determined by means of the time domain covariance analysis in both classically and nonclassically damped linear structural systems. A time integration scheme is proposed for covariance sensitivity. A modulated, filtered, white noise input process is adopted to model the stochastic nonstationary loads. The method allows for the evaluation of sensitivity statistics of different quantities of dynamic response with respect to structural parameters. Finally, numerical examples are presented regarding a multistorey shear frame building.


Author(s):  
Ramesh Talreja

Structural integrity of composite materials is governed by failure mechanisms that initiate at the scale of the microstructure. The local stress fields evolve with the progression of the failure mechanisms. Within the full span from initiation to criticality of the failure mechanisms, the governing length scales in a fibre-reinforced composite change from the fibre size to the characteristic fibre-architecture sizes, and eventually to a structural size, depending on the composite configuration and structural geometry as well as the imposed loading environment. Thus, a physical modelling of failure in composites must necessarily be of multi-scale nature, although not always with the same hierarchy for each failure mode. With this background, the paper examines the currently available main composite failure theories to assess their ability to capture the essential features of failure. A case is made for an alternative in the form of physical modelling and its skeleton is constructed based on physical observations and systematic analysis of the basic failure modes and associated stress fields and energy balances. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


2015 ◽  
Vol 813-814 ◽  
pp. 106-110
Author(s):  
Dalbir Singh ◽  
C. Ganesan ◽  
A. Rajaraman

Composites are being used in variety of applications ranging from defense and aircraft structures, where usage is profuse, to vehicle structures and even for repair and rehabilitation. Most of these composites are made of different laminates glued together with matrix for binding and now-a-days fibers of different types are embedded in a composite matrix. The characterizations of material properties of composites are mostly experimental with analytical modeling used to simulate the system behavior. But many times, the composites develop damage or distress in the form of cracking while they are in service and this adds a different dimension as one has to evaluate the response with the damage so that its performance during its remaining life is satisfactory. This is the objective of the present study where a hybrid approach using experimental results on damaged specimens and then analytical finite element are used to evaluate response. This will considerably help in remaining life assessment-RLA- for composites with damage so that design effectiveness with damage could be assessed. This investigation has been carried out on a typical composite with carbon fiber reinforcements, manufactured by IPCL Baroda (India) with trade name INDCARF-30. Experimental studies were conducted on undamaged and damaged specimens to simulate normal continuous loading and discontinuous loading-and-unloading states in actual systems. Based on the experimental results, material characterization inputs are taken and analytical studies were carried out using ANSYS to assess the response under linear and nonlinear material behavior to find the stiffness decay. Using stiffness decay RLA was computed and curves are given to bring the influence of type of damage and load at which damage had occurred.


Author(s):  
Efstratios Nikolaidis ◽  
Harley Cudney ◽  
Sophie Chen ◽  
Raphael T. Haftka ◽  
Raluca Rosca

Abstract This paper compares probabilistic and possibility-based methods for design against catastrophic failure under uncertainty. It studies the effect of the amount of information on the effectiveness of each method. The study is confined to problems where the boundary between survival and failure is sharp. First, the paper examines the theoretical foundations of probability and possibility. It also compares the two methods when they are used to assess the risk of a system. Finally, it compares the two methods on two design problems. A major difference between probability and possibility is in the axioms about the union of events. Because of this difference, probability and possibility calculi are fundamentally different and one cannot simulate possibility calculus using probabilistic models. It is shown that possibility-based methods can be less conservative than probability-based methods in systems with many failure modes. On the other hand, possibility-based methods tend to be more conservative than probability-based methods in systems that fail only if many unfavorable events occur simultaneously. Probabilistic methods are better than possibility-based methods if sufficient information is available. However, the latter can be better if little information is available. A principal reason is that it is easier to identify the most conservative possibilistic model than the most conservative probabilistic model that is consistent with the available information.


Sign in / Sign up

Export Citation Format

Share Document