Utilization of Pore-Size Distributions to Predict Thermophysical Properties and Performance of Biporous Wick Evaporators

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Sean W. Reilly ◽  
Ivan Catton

A sintered copper porous medium is an extremely effective structure used to enhance the evaporative heat transfer properties of a heat pipe. It provides both capillary pressure to passively draw liquid in and increased surface area to more effectively heat the liquid. A biporous wick is particularly effective for this application as there are two distinct size distributions of pores; small pores to provide ample capillary pressure to drive flow through the wick and large pores to provide high permeability for escaping vapor. The modeling described in this work is based on the work of Kovalev who used a pore size distribution in order to determine the most probable liquid saturation at a given position. The model distinguishes phases by choosing a “cutoff” pore size, where larger pores were assumed to be filled with vapor and smaller pores were assumed to be filled with liquid. For a given thickness and thermophysical properties of the liquid, this 1-D model predicts the temperature difference across the wick for a given input power. The modeling proposed in this work yielded results that compare very well with experimental data collected on biporous evaporators by Semenic.

2021 ◽  
Author(s):  
Martin Lanzendörfer

<p>Following the capillary bundle concept, i.e. idealizing the flow in a saturated porous media in a given direction as the Hagen-Poiseuille flow through a number of tubular capillaries, one can very easily solve what we would call the <em>forward problem</em>: Given the number and geometry of the capillaries (in particular, given the pore size distribution), the rheology of the fluid and the hydraulic gradient, to determine the resulting flux. With a Newtonian fluid, the flux would follow the linear Darcy law and the porous media would then be represented by one constant only (the permeability), while materials with very different pore size distributions can have identical permeability. With a non-Newtonian fluid, however, the flux resulting from the forward problem (while still easy to solve) depends in a more complicated nonlinear way upon the pore sizes. This has allowed researchers to try to solve the much more complicated <em>inverse problem</em>: Given the fluxes corresponding to a set of non-Newtonian rheologies and/or hydraulic gradients, to identify the geometry of the capillaries (say, the effective pore size distribution).</p><p>The potential applications are many. However, the inverse problem is, as they usually are, much more complicated. We will try to comment on some of the challenges that hinder our way forward. Some sets of experimental data may not reveal any information about the pore sizes. Some data may lead to numerically ill-posed problems. Different effective pore size distributions correspond to the same data set. Some resulting pore sizes may be misleading. We do not know how the measurement error affects the inverse problem results. How to plan an optimal set of experiments? Not speaking about the important question, how are the observed effective pore sizes related to other notions of pore size distribution.</p><p>All of the above issues can be addressed (at least initially) with artificial data, obtained e.g. by solving the forward problem numerically or by computing the flow through other idealized pore geometries. Apart from illustrating the above issues, we focus on <em>two distinct aspects of the inverse problem</em>, that should be regarded separately. First: given the forward problem with <em>N</em> distinct pore sizes, how do different algorithms and/or different sets of experiments perform in identifying them? Second: given the forward problem with a smooth continuous pore size distribution (or, with the number of pore sizes greater than <em>N</em>), how should an optimal representation by <em>N</em> effective pore sizes be defined, regardless of the method necessary to find them?</p>


2020 ◽  
Author(s):  
Scott C. Hauswirth ◽  
◽  
Majdi Abou Najm ◽  
Christelle Basset

2014 ◽  
Vol 936 ◽  
pp. 942-949 ◽  
Author(s):  
Hao Tian Zhang ◽  
Qiu Yu Zhang ◽  
Bao Liang Zhang ◽  
Chun Mei Li

Porous properties have notable effect on separating effect of organic polymer-based monolithic column. Different applications of monolithic columns require tailored pore size distributions. On account of that, P(GMA-co-EGDMA) monolithic columns were prepared with novel ternary porogenic agents. Glass tubes was chosen as polymerization mold. Moreover, factors influencing the inner pore morphology, pore size and specific surface area were investigated systematically. The results showed that the increasing of the solubility of porogenic agents and the amount of crosslinker, the decreasing of the amount of porogenic agents and temperature rising all could give rise to the decreasing of pore size. Remarkably, the effect of initiator was studied for the first time. The results showed that amount of initiator had no remarkable influence on porous properties. By controlling effect factors, P(GMA-co-EGDMA) Monolithic Columns with pore size from dozens to thousands of nanometer, which can be applied in separation of molecules with different size.


Fuel ◽  
2017 ◽  
Vol 206 ◽  
pp. 352-363 ◽  
Author(s):  
Yong Li ◽  
Cheng Zhang ◽  
Dazhen Tang ◽  
Quan Gan ◽  
Xinlei Niu ◽  
...  

2001 ◽  
Vol 714 ◽  
Author(s):  
Kazuhiko Omote ◽  
Shigeru Kawamura

ABSTRACTWe have successively developed a new x-ray scattering technique for a non-destructive determination of pore-size distributions in porous low-κ thin films formed on thick substrates. The pore size distribution in a film is derived from x-ray diffuse scattering data, which are measured using offset θ/2θ scans to avoid strong specular reflections from the film surface and its substrate. Γ-distribution mode for the pores in the film is used in the calculation. The average diameter and the dispersion parameter of the Γ-distribution function are varied and refined by computer so that the calculated scattering pattern best matches to the experimental pattern. The technique has been used to analyze porous methyl silsesquioxane (MSQ) films. The pore size distributions determined by the x-ray scattering technique agree with that of the commonly used gas adsorption technique. The x-ray technique has been also used successfully determine small pores less than one nanometer in diameter, which is well below the lowest limit of the gas adsorption technique.


Sign in / Sign up

Export Citation Format

Share Document