Investigation of a Hybrid Photovoltaic-Biomass System With Energy Storage Options

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Mehdi Hosseini ◽  
Ibrahim Dincer ◽  
Marc A. Rosen

A hybrid photovoltaic (PV)-biomass system with energy storage options is investigated based on energy and exergy analyses. The hybrid system consists of a photovoltaic system, an electrolyser, and a biomass gasifier, which is integrated with a biomass-based gas turbine. The PV system is accountable for 56% of the annual exergy destruction in the hybrid system, while 38% of the annual exergy destruction occurs in the biomass-gas turbine (GT) system. The overall energy and exergy efficiencies of the hybrid PV-biomass system with energy storage options are 34.8% and 34.1%, respectively. A 29% increase in both energy and exergy efficiencies is reported with an increase in the steam-to-carbon ratio (SC) in the range of 1–3 mol/mol. The related specific carbon dioxide emission reduction is 1441–583 g/kWh. In contrast to SC, an increase in gas turbine inlet temperature results in a negative effect on the overall energy and exergy efficiencies, and it does not make a significant contribution to the reduction in specific carbon dioxide emission.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yasser Abbasi ◽  
Ehsan Baniasadi ◽  
Hossein Ahmadikia

This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2emissions by almost 70 tons per year.


2014 ◽  
Vol 986-987 ◽  
pp. 1268-1272 ◽  
Author(s):  
Yang Xie ◽  
Ming Zhang ◽  
Guo Zhong Jiang ◽  
Peng Geng ◽  
Ke Xun Yu

Photovoltaic (PV) generation is widely used to solve energy shortage and environment problem. Since the output current of the solar cell will change with the sunlight irradiation, the power of the solar cells are not stable, so there is a need of a storage equipment connected to the PV system. With the characteristics of high efficient energy storage and quick response of the power exchange, the superconducting magnetic energy storage (SMES) can be used to meet the balance between the grid and the PV. A SMES and PV subsystem are connected together with the DC bus, which have less power electronics elements and can control power quality efficiently than linked with the AC bus. This hybrid system is composed of a DC/AC converter on the grid side, a DC/DC converter with the PV arrays, and a DC chopper with the superconducting magnet. A detailed model of the hybrid system is built with MATLAB/SIMULINK. Simulation results with and without SMES connected to the grid-connected photovoltaic system are presented, compared, and analyzed. The results of simulation demonstrate that the SMES system can maintain the DC bus as a constant value which can contribute to the stability and reliability of the grid-connected PV system.


2017 ◽  
Vol 6 (2) ◽  
pp. 127 ◽  
Author(s):  
Vahid Azami ◽  
Mortaza Yari

In this paper, a conventional SOFC–GT hybrid system and an SOFC–GT hybrid system with cathode gas recirculation system fuelled with syngas as the main source of energy were analyzed and their performances were compared. In the conventional SOFC–GT hybrid system the incoming air to the cathode is heated at the air recuperator and air preheater to meet the required cathode inlet temperature while in the SOFC–GT hybrid system with cathode gas recirculation, in addition to the air recuperator and air preheater, also the recirculation of the cathode exhaust gas is used to meet the required cathode inlet temperature. The system performances have been analyzed by means of models developed with the computer program Cycle–Tempo. A complete model of the SOFC–GT hybrid system with these two configurations evaluated in terms of energy and exergy efficiencies and their performance characteristics were compared. Simulation results show that the electrical energy and exergy efficiencies achieved in the cathode gas recirculation plant (64.76% and 66.28%, respectively) are significantly higher than those obtained in the conventional plant (54.53% and 55.8%).Keywords: Solid oxide fuel cell, Gas turbine, Cathode gas recirculation, Exergy.Article History: Received Feb 23rd 2017; Received in revised form May 26th 2017; Accepted June 1st 2017; Available onlineHow to Cite This Article: Azami, V, and Yari, M. (2017) Comparison between conventional design and cathode gas recirculation design of a direct-syngas solid oxide fuel cell–gas turbine hybrid systems part I: Design performance. International Journal of Renewable Energy Develeopment, 6(2), 127-136.https://doi.org/10.14710/ijred.6.2.127-136


2015 ◽  
Vol 12 (2) ◽  
pp. 161-176 ◽  
Author(s):  
S.O. Oyedepo ◽  
R.O Fagbenle ◽  
S.S Adefila ◽  
M.M Alam

This study presents thermodynamic analysis of the design and performance of eleven selected gas turbine power plants using the first and second laws of thermodynamics concepts. Energy and exergy analyses were conducted using operating data collected from the power plants to determine the energy loss and exergy destruction of each major component of the gas turbine plant. Energy analysis showed that the combustion chamber and the turbine are the components having the highest proportion of energy loss in the plants. Energy loss in combustion chamber and turbine varied from 33.31 to 39.95% and 30.83 to 35.24% respectively. The exergy analysis revealed that the combustion chamber is the most exergy destructive component compared to other cycle components. Exergy destruction in the combustion chamber varied from 86.05 to 94.67%. Combustion chamber has the highest exergy improvement potential which range from 30.21 to 88.86 MW. Also, its exergy efficiency is lower than that of other components studied, which is due to the high temperature difference between working fluid and burner temperature. Increasing gas turbine inlet temperature (GTIT), the exergy destruction of this component can be reduced.


Author(s):  
Ji Ho Ahn ◽  
Tong Seop Kim

Owing to the increasing consumption of fossil fuels and emission of greenhouse gases, interests in highly efficient and low carbon emitting power systems are growing fast. Several research groups have been suggesting advanced systems based on fuel cells and have also been applying carbon capture and storage technology to satisfy the demand for clean energy. In this study, the performance of a hybrid system, which is a combination of a molten carbonate fuel cell (MCFC) with oxy-combustion carbon capture and an indirectly fired micro gas turbine (MGT) was predicted. A 2.5MW MCFC system that is used in commercial applications was used as the reference system so that the results of the study could be applicable to practical situations. The ambient pressure type hybrid system was modeled by referring to the design parameters of an MGT that is currently being developed. A semi-closed type design characterized by flow recirculation was adopted for this hybrid system. A part of the recirculating gas is converted into liquefied carbon dioxide and captured for storage at the carbon separation unit. Almost 100% carbon dioxide capture is possible with this system. In these systems, the output power of the fuel cell is larger than in the normal hybrid system without carbon capture because the partial pressure of carbon dioxide increases. The increased cell power partially compensates for the power loss due to the carbon capture and MGT power reduction. The dependence of net system efficiency of the oxy-hybrid on compressor pressure ratio is marginal, especially beyond an optimal value.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3152 ◽  
Author(s):  
Huadian Xu ◽  
Jianhui Su ◽  
Ning Liu ◽  
Yong Shi

Conventional photovoltaic (PV) systems interfaced by grid-connected inverters fail to support the grid and participate in frequency regulation. Furthermore, reduced system inertia as a result of the integration of conventional PV systems may lead to an increased frequency deviation of the grid for contingencies. In this paper, a grid-supporting PV system, which can provide inertia and participate in frequency regulation through virtual synchronous generator (VSG) technology and an energy storage unit, is proposed. The function of supporting the grid is implemented in a practical PV system through using the presented control scheme and topology. Compared with the conventional PV system, the grid-supporting PV system, behaving as an inertial voltage source like synchronous generators, has the capability of participating in frequency regulation and providing inertia. Moreover, the proposed PV system can mitigate autonomously the power imbalance between generation and consumption, filter the PV power, and operate without the phase-locked loop after initial synchronization. Performance analysis is conducted and the stability constraint is theoretically formulated. The novel PV system is validated on a modified CIGRE benchmark under different cases, being compared with the conventional PV system. The verifications demonstrate the grid support functions of the proposed PV system.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


Author(s):  
Ji Ho Ahn ◽  
Tong Seop Kim

Owing to the increasing consumption of fossil fuels and emission of greenhouse gases, interests in highly efficient and low carbon emitting power systems are growing fast. Several research groups have been suggesting advanced systems based on fuel cells and have also been applying carbon capture and storage technology to satisfy the demand for clean energy. In this study, the performance of a hybrid system, which is a combination of a molten carbonate fuel cell (MCFC) with oxy-combustion carbon capture and an indirectly fired micro gas turbine (MGT), was predicted. A 2.5 MW MCFC system that is used in commercial applications was used as the reference system so that the results of the study could be applied to practical situations. The ambient pressure type hybrid system was modeled by referring to the design parameters of an MGT that is currently being developed. A semi-closed type design characterized by flow recirculation was adopted for this hybrid system. A part of the recirculating gas is converted into liquefied carbon dioxide and captured for storage at the carbon separation unit (CSU). Almost 100% carbon dioxide capture is possible with this system. In these systems, the output power of the fuel cell is larger than in the normal hybrid system without carbon capture because the partial pressure of carbon dioxide increases. The increased cell power partially compensates for the power loss due to the carbon capture and MGT power reduction. The dependence of net system efficiency of the oxy-hybrid on compressor pressure ratio is marginal, especially beyond an optimal value.


Sign in / Sign up

Export Citation Format

Share Document