Elastohydrodynamic Lubrication Analysis of Point Contacts With Consideration of Material Inhomogeneity

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Zhang Shengguang ◽  
Wang Wenzhong ◽  
Zhao Ziqiang

Inhomogeneities in matrix may significantly affect the performance of mechanical elements, such as possible fatigue life reduction for rolling bearing due to stress concentration induced by inhomogeneities; on the other hand, most components operate under lubrication environment. So far the numerical algorithms to solve lubrication problems without the consideration of inhomogeneities or inclusions are well developed. In this paper, the combination of elastohydrodynamic lubrication (EHL) and inclusion problem is realized to consider the effect of material inhomogeneity on the lubrication performance and subsurface stress distribution, etc. The matrix inhomogeneity will induce disturbed displacement, which will modify the film thickness and consequently result in the change of lubricated contact pressure distribution, etc. The matrix inhomogeneity is treated as the homogeneous inclusion with equivalent eigenstrain according to equivalent inclusion method (EIM), and the disturbed displacement is calculated by semi-analytical method (SAM). While the pressure and film thickness distributions are obtained by solving Reynolds equation. The iterative process is realized to consider the interaction between lubrication behavior and material response. The results show the inhomogeneity in contacting body will greatly influence the lubricated contact performance. The influences are different between compliant and stiff inhomogeneity. It is also found that different sizes and positions of inhomogeneity can significantly affect the contact characteristic parameters.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Keying Chen ◽  
Liangcai Zeng ◽  
Juan Chen ◽  
Xianzhong Ding

A numerical solution for line contact elastohydrodynamic lubrication (EHL) occurring on the rough surface of heterogeneous materials with a group of particles is presented in this study. The film thickness disturbance caused by particles and roughness is considered into the solution system, and the film pressure between the contact gap generated by the particles and the surface roughness is obtained through a unified Reynold equation system. The inclusions buried in the matrix are made equivalent to areas with the same material as that of the matrix through Eshelby’s equivalent inclusion method and the roughness is characterized by related functions. The results present the effects of different rough topographies combined with the related parameters of the particles on the EHL performance, and the minimum film thickness distribution under different loads, running speeds, and initial viscosities are also investigated. The results show that the roughness morphology and the particles can affect the behavior of the EHL, the traction force on a square rough surface is smaller, and the soft particles have more advantages for improving the EHL performance.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


Author(s):  
Ansheng Zhang ◽  
Jing Wang ◽  
Yiming Han ◽  
Jianjun Zhang ◽  
Yi Liu

For industrial roller or bush chains, the bush swings relative to the pin at working condition. If proper lubrication is maintained, an elastohydrodynamic lubrication contact is formed between the pin and the bush. In this study, a custom-made pin was used to replace the steel ball of a ball-disk test rig and optical interferometric experiments were carried out to study the effect of pin generatrix on the lubrication performance. The effects of generatrix shape, stroke length and oil supply condition on the lubrication state were explored. It is found that the change of the generatrix has an important influence on the oil film thickness, especially under rare oil supply condition.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650014 ◽  
Author(s):  
Kun Zhou ◽  
Qingbing Dong

This paper develops a three-dimensional (3D) model for a heterogeneous half-space with inclusions distributed periodically beneath its surface subject to elastohydrodynamic lubrication (EHL) line-contact applied by a cylindrical loading body. The model takes into account the interactions between the loading body, the fluid lubricant and the heterogeneous half-space. In the absence of subsurface inclusions, the surface contact pressure distribution, the half-space surface deformation and the lubricant film thickness profile are obtained through solving a unified Reynolds equation system. The inclusions are homogenized according to Eshelby’s equivalent inclusion method (EIM) with unknown eigenstrains to be determined. The disturbed half-space surface deformations induced by the subsurface inclusions or eigenstrains are iteratively introduced into the lubricant film thickness until the surface deformation finally converges. Both time-independent smooth surface contact and time-dependent rough surface contact are considered for the lubricated contact problem.


2000 ◽  
Vol 123 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi ◽  
Michael H. Hoeprich

In this paper a model is presented to investigate the start up condition in elastohydrodynamic lubrication. During start up the lubrication condition falls into the mixed lubrication regime. The transition from solid contact to lubricated contact is of importance when investigating the start up process and its effects on bearing performance. The model presented uses the multigrid multilevel method to solve the lubricated region of the contact and a minimization of complementary energy approach to solve the solid contact region. The FFT method is incorporated to speed up the film thickness calculation. An iteration scheme between the lubrication and the solid contact problems is used to achieve the solution of the mixed lubrication contact problem. The results of start up with smooth surfaces are provided for the case when speed increases from zero to desired speed in one step and the case when speed is linearly increased to desired speed. The details of the transition from full solid contact to full lubricated contact in EHL start up are presented. The change of pressure and film thickness as well as contact forces and contact areas are discussed.


Author(s):  
Caichao Zhu ◽  
Zhangdong Sun ◽  
Huaiju Liu ◽  
Chaosheng Song ◽  
Zufeng Li ◽  
...  

The lubrication performances of cycloid drives affect the dynamic characteristics, the mechanical efficiency and the contact fatigue behavior of the system. To maintain tranmission precision it is required to minimum the times of disassebly, hence grease lubrication is often applied where starvation might occur in service. Starved lubrication performance of a cycloid gear drive is studied using a numerical finte line starved-elastohydrodynamic lubrication model. The parameter of the inlet oil film thickness is chosen to represent the starved status. Effects of the inlet film thickness on the centralfilm thickness, the friction coefficient and the frictional power loss are investigated. In addition, effects of different shape of inlet oil-supply layer in the same starved degree on lubrication performance are studied. Under the same inlet oil supply volume, the convex type profile would present a better oil film within the nominal contact zone compared with other four different shapes of the inlet film supply.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
David Nečas ◽  
Tomáš Jaroš ◽  
Kryštof Dočkal ◽  
Petr Šperka ◽  
Martin Vrbka ◽  
...  

The present paper deals with an investigation of film formation in compliant lubricated contact. Despite these contacts can be found in many applications of daily life including both biological and technical fields, so far little is known about the lubrication mechanisms inside the contacts. The main attention is paid to the effect of kinematic conditions on central film thickness. For this purpose, fluorescent microscopy method was employed. Experiments were realized in ball-on-disk configuration, while the ball was made from rubber and the disk was from optical glass. The contact was lubricated by glycerol and polyglycol to examine the effect of fluid viscosity. The measurements were conducted under pure rolling and rolling/sliding conditions. The entrainment speed varied from 10 to 400 mm/s and constant load of 0.2 N was applied. Experimental results were compared with two theoretical predictions derived for isoviscous-elastohydrodynamic lubrication (I-EHL) regime. It was found that the thickness of lubricating film gradually increases with increasing entrainment speed, which corresponds to theoretical assumptions. Against expectations, evident influence of slide-to-roll ratio (SRR) on film formation was observed. In the last part of the paper, some limitations of this study are discussed and several recommendations for further methodology improvement are suggested.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Zhanjiang Wang ◽  
Dong Zhu ◽  
Qian Wang

Solid materials forming the boundaries of a lubrication interface may be elastoplastic, heat treated, coated with multilayers, or functionally graded. They may also be composites reinforced by particles or have impurities and defects. Presented in this paper is a model for elastohydrodynamic lubrication interfaces formed with these realistic materials. This model considers the surface deformation and subsurface stresses influenced by material inhomogeneities, where the inhomogeneities are replaced by inclusions with properly determined eigenstrains by means of the equivalent inclusion method. The surface displacement or deformation caused by inhomogeneities is introduced to the film thickness equation. The stresses are the sum of those caused by the fluid pressure and the eigenstrains. The lubrication of a material with a single inhomogeneity, multiple inhomogeneities, and functionally graded coatings are analyzed to reveal the influence of inhomogeneities on film thickness, pressure distribution, and subsurface stresses.


2015 ◽  
Vol 07 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Qingbing Dong ◽  
Kun Zhou

A semi-analytic solution is presented for multiple inhomogeneous inclusions and cracks in a half-space under elastohydrodynamic lubrication contact. In formulating the governing equations, each inhomogeneous inclusion embedded under the contacting surfaces is modeled as a homogeneous inclusion with initial eigenstrains plus unknown equivalent eigenstrains by employing Eshelby's equivalent inclusion method, while each crack of mixed modes I and II is treated as a distribution of climb and glide dislocations with unknown densities according to the dislocation distribution technique. Such a treatment converts the problem into a homogeneous lubricated contact with disturbed deformation due to the inclusions and cracks. The unknowns in the governing equations are integrated by a numerical algorithm and determined iteratively by utilizing a modified conjugate gradient method. The iterative process is performed until the convergence of the half-space surface displacements, which involve the displacements due to the inhomogeneous inclusions and cracks as well as the fluid pressure. Samples are presented to demonstrate the generality of the solution.


1999 ◽  
Vol 66 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Z. Zhong ◽  
S. A. Meguid

An exact solution is developed for the problem of a spherical inclusion with an imperfectly bonded interface. The inclusion is assumed to have a uniform eigenstrain and a different elastic modulus tensor from that of the matrix. The displacement discontinuity at the interface is considered and a linear interfacial condition, which assumes that the displacement jump is proportional to the interfacial traction, is adopted. The elastic field induced by the uniform eigenstrain given in the imperfectly bonded inclusion is decomposed into three parts. The first part is prescribed by a uniform eigenstrain in a perfectly bonded spherical inclusion. The second part is formulated in terms of an equivalent nonuniform eigenstrain distributed over a perfectly bonded spherical inclusion which models the material mismatch between the inclusion and the matrix, while the third part is obtained in terms of an imaginary Somigliana dislocation field which models the interfacial sliding and normal separation. The exact form of the equivalent nonuniform eigenstrain and the imaginary Somigliana dislocation are fully determined using the equivalent inclusion method and the associated interfacial condition. The elastic fields are then obtained explicitly by means of the superposition principle. The resulting solution is then used to evaluate the average Eshelby tensor and the elastic strain energy.


Sign in / Sign up

Export Citation Format

Share Document