The Resolution of d'Alembert's Paradox and Thermodynamic Admissibility

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Gerald G. Kleinstein

The d'Alembert paradox, annunciated in 1752, was established after it was shown that the result of a net zero drag, obtained by applying potential theory to the incompressible flow past a sphere, was in contradiction with experimental results which showed a positive drag. Interpreting the result as a flaw in the theory, resulted in the declaration of the paradox. Following d'Alembert, we assume a potential motion, and proceed to analyze the consequences of this assumption using the global principles of continuum mechanics. We show that if the fluid is inviscid, the potential motion is thermodynamically admissible, the drag is zero, and the motion can persist indefinitely. Although no conventional fluid is available to either falsify (or validate), this result experimentally, in principle, the theory could be tested by using a superfluid, such as liquid Helium. If the fluid is viscous, we show that the potential irrotational motion is thermodynamically inadmissible, it is in violation of the second law of thermodynamics, and hence such a motion cannot persist. Indeed, observations show that when a rigid body is impulsively set into motion, an irrotational motion may exist initially but does not persist. Any flow property which is derived from a thermodynamically inadmissible motion cannot be expected to be in agreement with experimental data. As an illustration we show that the drag, calculated from the viscous potential solution of the flow past a sphere, is zero. We submit that since the theory of continuum mechanics predicts that no agreement between results obtained from viscous potential theory and experimental data can be expected, there is no room for a paradox once a contradiction is in fact observed. In nature, or under experimental conditions, the nonpersistence of the thermodynamically inadmissible motion proceeds in a breakup of the irrotational motion which transforms into a rotational and obviously admissible motion. We show that by selecting boundary conditions, required in the solution of the differential equations of motion, such that they satisfy the Clausius–Duhem jump conditions inequality, the thermodynamic admissibility of the solution is a priori assured. We also show the vorticity distribution at the wall associated with the particular choice of boundary condition.

An extension of Kirchoff’s theory of the motion of solid bodies in irrotationally moving liquids to the case of motion in liquids in which a vorticity is present does not exist. Only a few isolated cases of such motion are known. Bearing on the consideration of this paper, there is an important work by Taylor which expresses the additional pressure effect on a system of cylinders moving in a perfect liquid without rotation when the whole system is rotated uniformly about an axis. Taylor’s theory reduces the problem of such motion to one of irrotational motion. In the present paper the motion of a perfect liquid having constant vorticity, and in which a cylinder of any cross-section is moving in any manner, has been considered. The pressure integral can be obtained in a simple form, referred to axes fixed in the body, which is very suitable for calculation. It is shown, whenever the pure potential motion of the liquid for the rotation of the cylinder and the solution of a definite potential problem or the corresponding Green’s function can be found, the formula can be applied to calculate the motion of the cylinder in liquids with constant vorticity. Two important cases of constant vorticity are uniform shear motion along a direction and uniform rotation about an axis. In the present paper the former case is considered in detail for an elliptic cylinder. The case of uniform rotation being covered by Taylor’s result it is only verified that the present method gives the same result as Taylor’s formulae. There are some simple free motions of an elliptic cylinder in a liquid with uniform shear motion which have been discussed in the paper. 2—Equations of Motion Referred to Axes Fixed in the Body and the Pressure Integral It is first necessary to write down the equations of motion referred to a system of axes fixed in the body having both translation and rotation. These equations are obtained below following a method of Taylor.


1971 ◽  
Vol 48 (4) ◽  
pp. 771-789 ◽  
Author(s):  
S. C. R. Dennis ◽  
J. D. A. Walker

The steady axially symmetric incompressible flow past a sphere is investigated for Reynolds numbers, based on the sphere diameter, in the range 0·1 to 40. The formulation is a semi-analytical one whereby the flow variables are expanded as series of Legendre functions, hence reducing the equations of motion to ordinary differential equations. The ordinary differential equations are solved by numerical methods. Only a finite number of these equations can be solved, corresponding to an approximation obtained by truncating the Legendre series at some stage. More terms of the series are required asRincreases and the present calculations were terminated atR= 40. The calculated drag coefficient is compared with the results of previous investigations and with experimental data. The Reynolds number at which separation first occurs is estimated as 20·5.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


2004 ◽  
Vol 18 (2-4) ◽  
pp. 265-276 ◽  
Author(s):  
Sungsu Lee ◽  
Kyung-Soo Yang

1991 ◽  
Vol 1 (2) ◽  
pp. 139-151
Author(s):  
J.W. Grant ◽  
J.R. Cotton

The otolith organs were modeled mathematically as a 3-element system consisting of a viscous endolymph fluid in contact with a rigid otoconial layer that is attached to the skull by a gel layer. The gel layer was considered to be a viscoelastic solid, and was modeled as a simple Kelvin material. The governing differential equations of motion were derived and nondimensionalized, yielding 3 nondimensional parameters: nondimensional density, nondimensional viscosity, and nondimensional elasticity. The equations were solved using finite difference techniques on a digital computer. By comparing the model’s response with previous experimental research, values for the nondimensional parameters were found. The results indicate that the inclusion of viscous and elastic effects in the gel layer are necessary for the model to produce otoconial layer deflections that are consistent with physiologic displacements. Future experimental data analysis and mathematical modeling effects should include viscoelastic gel layer effects, as this is a major contributor to system damping and response.


2019 ◽  
Vol 31 (11) ◽  
pp. 113105
Author(s):  
Kostas D. Housiadas ◽  
Antony N. Beris

Author(s):  
John Newman ◽  
Vincent Battaglia

Author(s):  
Thuy Chu ◽  
Tan C. Nguyen ◽  
Jihoon Wang ◽  
Duc Vuong

AbstractElectrical Submersible Pump (ESP) is one of the major Artificial Lift methods that is reliable and effective for pumping high volume of fluids from wellbores. However, ESP is not recommended for applications with high gas liquid ratio. The presence of free gas inside the pump causes pump performance degradation which may lead to problems or even failure during operations. Thus, it is important to investigate effect of free gas on ESP performance under downhole conditions. At present, existing models or correlations are based on/verified with experimental data. This study is one of the first attempts to develop correlations for predicting two-phase gas–liquid pump performance under downhole conditions by using field data and laboratory data. Field data from three oil producing wells provided by Strata Production Company and Perdure Petroleum LLC. as well as experimental data obtained from experimental facility at Production and Drilling Research Project—New Mexico Tech were used in this study. Actual two-phase pump differential pressure per stage is obtained from experiments or estimated from field data and was normalized using pump performance curve. The values are compared to pump performance curve to study the relationships between pump performance and free gas percentage at pump intake. Correlations to predict ESP performance in two-phase flow under downhole and experimental conditions was derived from the results using regression technique. The correlation developed from field data presented in this study can be used to predict two-phase ESP performance under downhole conditions and under high gas fraction. The results from the experimental data confirm the reliability of the developed correlation using field data to predict two-phase ESP performance under downhole conditions. The developed correlation using the laboratory data predicts quite well the two-phase pump performance at the gas fraction of less than 15% while it is no longer reliable when free gas fraction is more than 15%. The findings from this study will help operating companies as well as ESP manufacturers to operate ESPs within the recommended range under downhole conditions. However, it is recommended to use the proposed correlation on reservoirs with conditions similar to those of the three presented wells.


1977 ◽  
Vol 55 (23) ◽  
pp. 4037-4044 ◽  
Author(s):  
Remigio Germano Barradas ◽  
Stephen Fletcher ◽  
Sandor Szabo

The deposition of silver onto glassy carbon is described. The solution consisted of 10−2 M AgClO4 in 1.0 M HClO4. Experiments reveal the difficulties in trying to separate nucleation and growth phenomena from mass transport effects. A simple semi-quantitative model is proposed to explain the experimental data. It is also shown that the deposition reaction is not completely reversible under certain experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document