scholarly journals Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures

2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Xiangjie Meng ◽  
Alexander G. Bruno ◽  
Bo Cheng ◽  
Wenjun Wang ◽  
Mary L. Bouxsein ◽  
...  

Intervertebral translations and rotations are likely dependent on intervertebral stiffness properties. The objective of this study was to incorporate realistic intervertebral stiffnesses in a musculoskeletal model of the lumbar spine using a novel force-dependent kinematics approach, and examine the effects on vertebral compressive loading and intervertebral motions. Predicted vertebral loading and intervertebral motions were compared to previously reported in vivo measurements. Intervertebral joint reaction forces and motions were strongly affected by flexion stiffness, as well as force–motion coupling of the intervertebral stiffness. Better understanding of intervertebral stiffness and force–motion coupling could improve musculoskeletal modeling, implant design, and surgical planning.

Author(s):  
A. Asadi Nikooyan ◽  
H. E. J. Veeger ◽  
P. Westerhoff ◽  
F. Graichen ◽  
G. Bergmann ◽  
...  

The Delft Shoulder and Elbow Model (DSEM), a large-scale musculoskeletal model, allows for estimation of individual muscle and joint reaction forces in the shoulder and elbow complex. Although the model has been qualitatively verified previously using EMG signals, quantitative validation has not yet been feasible. In this paper we report on the validation of the DSEM by comparing the GH-joint contact forces estimated by the DSEM with the in-vivo forces measured by a recently developed instrumented shoulder endoprosthesis, capable of measuring the glenohumeral (GH) joint contact forces in-vivo [1]. To validate the model, two patients with instrumented shoulder hemi-arthroplasty were measured. The measurement process included the collection of motion data as well as in-vivo joint reaction forces. Segment and joint angles were used as the model inputs to estimate the GH-joint contact forces. The estimated and recorded GH-joint contact forces for Range of Motion (RoM) and force tasks were compared based on the magnitude of the resultant forces. The results show that the estimated force follows the measured force for abduction and anteflexion motions up to 80 and 50 degrees arm elevations, respectively, while they show different behaviors for angles above 90 degrees (decrease is estimated but increase is measured). The DSEM underestimates the peak force for RoM (up to 38% for abduction motion and 64% for anteflexion motion), while overestimates the peak forces (up to 90%) for most directions of performing the force tasks.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Quental Carlos ◽  
Azevedo Margarida ◽  
Ambrósio Jorge ◽  
Gonçalves S. B. ◽  
Folgado João

Abstract Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.


Author(s):  
Koichi Kobayashi ◽  
Guoan Li

The load transfer mechanics across the patellofemoral (PF) joint during weight-bearing conditions is important for treatment of the knee pathology, such as knee OA, ACL deficiency as well as TKA. Many studies have characterized the PF joint reaction forces using equilibriums of the quadriceps and ground reaction forces at the knee joint [1,2,3]. However, this simplification does not consider other muscle function as well as 3D knee joint contact location when calculate moment arms of the involved forces.


Author(s):  
Jackie D. Zehr ◽  
Jack P. Callaghan

Abstract A mechanical goal of in vitro testing systems is to minimize differences between applied and actual forces and moments experienced by spinal units. This study quantified the joint reaction forces and reaction flexion-extension moments during dynamic compression loading imposed throughout the physiological flexion-extension range-of-motion. Constrained (fixed base) and unconstrained (floating base) testing systems were compared. Sixteen porcine spinal units were assigned to both testing groups. Following conditioning tests, specimens were dynamically loaded for 1 cycle with a 1 Hz compression waveform to a peak load of 1 kN and 2 kN while positioned in five different postures (neutral, 100% and 300% of the flexion and extension neutral zone), totalling ten trials per FSU. A six degree-of-freedom force and torque sensor was used to measure peak reaction forces and moments for each trial. Shear reaction forces were significantly greater (25.5 N - 85.7 N) when the testing system was constrained compared to unconstrained (p < 0.029). The reaction moment was influenced by posture (p = 0.037), particularly in C5C6 spinal units. In 300% extension (C5C6), the reaction moment was, on average, 9.9 Nm greater than the applied moment in both testing systems and differed from all other postures (p < 0.001). The reaction moment error was, on average, 0.45 Nm at all other postures. In conclusion, these findings demonstrate that comparable reaction moments can be achieved with unconstrained systems, but without inducing appreciable shear reaction forces.


2021 ◽  
Vol 13 (1) ◽  
pp. 163-169
Author(s):  
Karol Lann vel Lace ◽  
Michalina Błażkiewicz

Abstract Study aim: To investigate the effect of wearing ski boots on kinematic and kinetic parameters of lower limbs during gait. Furthermore, loads in lower limb joints were assessed using the musculoskeletal model. Material and methods: The study examined 10 healthy women with shoe size 40 (EUR). Kinematic and kinetic data of walking in ski boots and barefoot were collected using a Vicon system and Kistler plates. A musculoskeletal model derived from AnyBody Modeling System was used to calculate joint reaction forces. Results: Wearing ski boots caused the range of motion in the knee joint to be significantly smaller and the hip joint to be significantly larger. Muscle torques were significantly greater in walking in ski boots for the knee and hip joints. Wearing ski boots reduced the reaction forces in the lower limb joints by 18% for the ankle, 16% for the knee, and 39% for the hip. Conclusions: Ski boot causes changes in the ranges of angles in the lower limb joints and increases muscle torques in the knee and hip joints but it does not increase the load on the joints. Walking in a ski boot is not destructive in terms of forces acting in the lower limb joints.


2020 ◽  
Vol 73 (1) ◽  
pp. 59-72
Author(s):  
Jingguang Qian ◽  
Yiling Mao ◽  
Xiao Tang ◽  
Zhaoxia Li ◽  
Chen Wen ◽  
...  

AbstractIn order to fully understand contact dynamics on a trampoline, a simulation approach using a musculoskeletal model coupled with a dynamic model of the trampoline is essential. The purpose of the study was to examine dynamics and selected lower extremity muscle forces in a landing and jumping movement on a trampoline, using a combination of finite element modeling and musculoskeletal modeling. The rigid frame of the trampoline was modeled in ADAMS and coupled with a finite element model of the elastic trampoline net surface in ANSYS. A musculoskeletal model of an elite trampoline athlete was further developed in LifeMod and combined with the finite element model of the trampoline. The results showed that the peak trampoline reaction forces (TRF) were 3400 N (6.6 BW) and 2900 N (5.6 BW) for the left and right limb, respectively. The right hip, knee and ankle joint reaction forces reached the maximum between 3000-4000 N (5.8 – 7.7 BW). The gluteus maximum and quadriceps reached the maximum muscle force of 380 N (0.7 BW) and 780 N (1.5 BW), respectively. Asymmetric loading patterns between left and right TRFs and lower extremities joint reaction forces were observed due to the need to generate the rotational movement during the takeoff. The observed rigid and erect body posture suggested that the hip and knee extensors played important roles in minimizing energy absorption and maximizing energy generation during the trampoline takeoff.


2018 ◽  
Vol 7 (3) ◽  
pp. 1672 ◽  
Author(s):  
Chethan KN ◽  
Shyamasunder Bhat N ◽  
Satish Shenoy B

Hip joint is the second largest joint in human after knee joint. It is associated with different types of motion which helps in the movement of human body and provide stability. Biomechanics involves the study of movement of living organism. It is important to know and understand the basics of biomechanics of hip joint to define the movement of hip joint along with its load carrying capacity in different day to day activities. Many researchers are worked to know the basics biomechanics of hip joint both in in-vitro and in- vivo conditions. In this paper, it has been reported in detail to know the different biomechanical aspects involved in the hip joint during different movement and also different biomaterials used in the hip joint prosthesis. It is majorly focused on load transmitting by hip joint by upper body to lower body in different activities such as walking, running, stumbling etc. So, these basic understanding helps to understand effectively the joint reaction forces which is acting on hip joint while designing new hip joint prosthesis.  


2017 ◽  
Author(s):  
Hugo Dutel ◽  
Alana C Sharp ◽  
Marc E H Jones ◽  
Susan E Evans ◽  
Micheal J Fagan ◽  
...  

The lizard species Salvator ‘Tupinambis’ merianae and Varanus ornatus evolved independently in South America and Africa but share similar ecology and feeding behaviour, despite having notable differences in their skull structure. Tupinambis has a compact, relatively short and wide snout, whereas that of Varanus is more slender and narrow. In addition, a postorbital bar (POB) is present in Tupinambis but absent in Varanus, and the former lacks the mid-frontal suture that is present in the latter. Here, we explore the biomechanical significance of these differences using 3D computer-based mechanical simulations based on micro-computed tomography, detailed muscle dissections, and in vivo data. First, we simulated muscle activity and joint-reaction forces during biting using Multibody Dynamics Analysis. Then, the forces calculated from these models were used as an input for Finite Element Analysis, to investigate and compare the strains of the skull in these two species. The effects of the presence/absence of structures, such as the POB, were investigated by constructing artificial models which geometry was altered. Our results indicate that strains in the skull bones are lower in Tupinambis than in Varanus, in particular at the back of the skull. The presence of a POB clearly reduces the strains in the bones during posterior biting in Tupinambis, but not in Varanus. Our results hence highlight how the morphological differences between these two taxa affect the mechanical behaviour of their respective skulls during feeding.


Author(s):  
S. C. E. Brandon ◽  
D. G. Thelen ◽  
K. J. Deluzio

Accurate prediction of knee joint contact loading during gait is important for understanding knee pathology and development of suitable clinical interventions. While many researchers have modeled the knee contact loads during level walking, these predictions have ranged from 3.4 [1] to 7 [2] times body weight. Validation of contact loads is difficult; the joint contact load depends not only on readily obtainable external kinematics and reaction forces, but also on the forces generated by muscle and other soft tissues. Recently, an instrumented tibial implant, capable of telemetrically reporting the six degree-of-freedom loading environment of the tibial plateau, was used to tune and validate an EMG-driven model of the lower extremity [3]. Recognizing the value of these in vivo data, and the limitations of existing knee models, these researchers devised the Grand Challenge Competitions to Predict In Vivo Knee Loads.


Sign in / Sign up

Export Citation Format

Share Document