Comparison of Steady and Unsteady Flows in a Transonic Radial Vaned Diffuser

2016 ◽  
Vol 138 (12) ◽  
Author(s):  
E. Benichou ◽  
I. Trébinjac

Boundary layer suction can be effective in delaying compressor surge, if the surge is triggered by flow separation on the shroud- or hub-casing. This work aims at positioning a suction slot in a radial vaned diffuser, which is thought to be the limiting component in a centrifugal compressor, such as the one considered here. The location of the slot is determined based on the results of both steady and unsteady flow simulations of a transonic centrifugal compressor of a turboshaft. Although the overall performance of the compressor is well-described by steady RANS, large discrepancies are observed between the steady and unsteady simulations of the diffuser flow, discrepancies imply different flow-separation scenarios. Steady results show more low-momentum fluid near the hub, whereas it is concentrated near the shroud in the unsteady simulations, hence no valid physical conclusions can be expected from the steady simulations. Analysis of the instantaneous skin-friction distribution from the unsteady simulations reveals that the separation is fixed and leads to a slot location on the shroud casing, near the diffuser main-vane suction side, so that it covers the range of separation saddle positions as the operating point is changed.

Author(s):  
Beni Cukurel ◽  
Patrick B. Lawless ◽  
Sanford Fleeter

An efficient diffuser is essential to a modern compressor stage, due to its significance in stage performance, durability and operability. To address the need for data that describe the complex, unsteady flow field in a vaned diffuser, Particle Image Velocity is utilized to characterize the spanwise and circumferential variations of the flow features in the vaned diffuser passage of a transonic centrifugal compressor. The spanwise variation in the diffuser flow field is further investigated by comparison of 3 different operating conditions representative of low, nominal and high loading. These data demonstrate that not only the diffuser flow field is highly dependent on the operation conditions, e.g. hub-to-shroud variation increases with loading, but also the circumferential periodicity, created by the highly three dimensional impeller discharge flow, generates a larger unsteadiness towards the hub region of the vaned diffuser.


Author(s):  
Yang Zhao ◽  
Jiayi Zhao ◽  
Zhiheng Wang ◽  
Guang Xi

The diffuser rotating stall in a centrifugal compressor with vaned diffuser is one of important unsteady flow phenomena, which limits the operating range of the compressor. In this paper, the unsteady CFD analysis on a low-speed centrifugal compressor has been performed to investigate the flow characteristic in the diffuser and the propagation of the diffuser rotating stall. The flow behaviors at the outlet of the impeller at design and off-design conditions are firstly investigated. It is found that a reversal flow, induced by the tip leakage flow, exists near the shroud at the impeller outlet and becomes serious with the mass flow rate reduced. Due to the span-wise variation of the flow angle at the diffuser inlet and the inversed pressure gradient in the passage, the leading-edge vortex (LEV) generates on the diffuser leading edge. The LEV then induces the secondary flow in the diffuser passage and then causes the hub-corner separation. Furthermore, the propagation of the diffuser rotating stall is presented in details. The suction-side separation near the hub induces the blockage in the passage. And the shedding vortex from the suction side moves toward the leading edge of the adjacent blade. When the vortex reaches to the leading edge of the adjacent blade, the incidence increase and a new separation occurs on the suction side. With the development of the new separation, the passage becomes blocked gradually and the upstream stalled passage recovers to a normal condition. The rotating stall propagates along the direction of the impeller rotation at about 4.5% of the impeller rotational speed.


2003 ◽  
Vol 9 (4) ◽  
pp. 279-284 ◽  
Author(s):  
Koji Nakagawa ◽  
Hiroshi Hayami ◽  
Yuichi Keimi

Flow mechanisms suppressing the flow separation in two diffusers, a low-solidity cascade diffuser and a vaned diffuser with additional small vanes near the inlet, were compared mainly by numerical simulation. As the superiority of the low-solidity cascade diffuser was expected, a series of experiments was conducted using a transonic centrifugal compressor with a maximum pressure ratio of 7. The performance of the compressor with the vaned diffuser was comparable to that of the low-solidity cascade diffuser only between the surge point and the design flowrate at a pressure ratio of 3.5. The maximum flowrate of the vaned diffuser was lower than that of the low-solidity cascade diffuser. At higher rotational speeds, the pressure ratio at the surge point, the efficiency, and the flow range of the low-solidity cascade diffuser exceded those of a vaned diffuser at a pressure ratio of 3.5.


2021 ◽  
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Matteo Manganelli ◽  
Mirko Morini ◽  
...  

Abstract The operability region of a centrifugal compressor is bounded by the low-flow (or high-pressure ratio) limit, commonly referred to as surge. The exact location of the surge line on the map can vary depending on the operating condition and, as a result, a typical Surge Avoidance Line is established at 10% to 15% above the stated flow for the theoretical surge line. The current state of the art of centrifugal compressor surge control is to utilize a global recycle valve to return flow from the discharge side of a centrifugal compressor to the suction side to increase the flow through the compressor and, thus, avoid entering the surge region. This is conventionally handled by defining a compressor surge control line that conservatively assumes that all stages must be kept out of surge at all the time. In compressors with multiple stages, the amount of energy loss is disproportion-ally large since the energy that was added in each stage is lost during system level (or global) recycling. This work proposes an internal stage-wise recycling that provides a much more controlled flow recycling to affect only those stages that may be on the verge of surge. The amount of flow needed for such a scheme will be much smaller than highly conservative global recycling approach. Also, the flow does not leave the compressor casing and therefore does not cross the pressure boundary. Compared to global recycling this inherently has less loss depending upon application and specific of control design.


Author(s):  
D. Stahlecker ◽  
G. Gyarmathy

The unsteady 3D impeller exit and vaned diffuser flow of a high-subsonic centrifugal compressor has been investigated with an LDV system. Time-resolved 3D velocity measurements were taken along a streampath at 8 positions from impeller exit downwards through the vaned diffuser and at 18 positions from hub to casing at each station. The compressor was operated at its best point at a rim Mach number of Mu = 0.75. Time-resolved (phase averaged) angle and velocity profiles are presented for 2 positions along the streampath. The time-averaged velocity, deterministic fluctuation intensity, turbulence intensity, and in-plane Reynolds sheer stress profiles, presented for all stations, show the evolution of flow and permit comparisons to in-house CFD calculations to be made. The flow leaving the impeller enters the diffuser with an asymmetric and distorted velocity profile. It is shown that the deterministic fluctuations caused by the jet/wake are quickly damped along the streampath. The results illustrate the deceleration of the flow arriving near the hub in the diffuser channel. The deceleration is accompanied by a sharp increase of turbulence. Near the casing, where the approach velocity is low, no deceleration occurs and the Reynolds stresses are high. Turbulence in the in-plane flow can be regarded as isotropic whereas the axial fluctuations clearly show a high amount of anisotropicity. The narrow diffuser passage required special optical measures for permitting close-to-wall LDV measurements. The experiences are described.


Author(s):  
Isabelle Tre´binjac ◽  
Nicolas Bulot ◽  
Xavier Ottavy ◽  
Nicolas Buffaz

Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. Unsteady 3D simulations were performed with the code elsA that solves the turbulent averaged Navier-Stokes equations, at three operating points: choked flow, peak efficiency and near surge. Unsteady pressure measurements up to 150 kHz were carried out in the entry zone of the vaned diffuser (in the vaneless space and in the semi-vaneless space) when the compressor came into surge. These static pressure sensors were mounted on the shroud enwall. The paper focuses on the vaneless and semi-vaneless space where the surge originates. A detailed analysis of the flow pattern coming from the unsteady computations from choked flow towards surge led to identify the physical mechanisms involved in the surge inception. It is shown that, when approaching surge, the flow is destabilized by a severe modification of the shock system in the vaned diffuser inlet. The first perturbation is acquired from the transducer located just upstream of the shock foot (i.e. on the vane suction side surface), indicating a movement of the shock towards the vaneless space. This perturbation travels upstream and leads to the strongest short-wavelength perturbation acquired from the transducer located just upstream of the vane leading edge. This strongest short-wavelength perturbation which level may reach almost four times the mean exit pressure value triggers the full scale instability.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Y. Bousquet ◽  
N. Binder ◽  
G. Dufour ◽  
X. Carbonneau ◽  
M. Roumeas ◽  
...  

The present paper numerically investigates the stall inception mechanisms in a centrifugal compressor stage composed of a splittered unshrouded impeller and a vaned diffuser. Unsteady numerical simulations have been conducted on a calculation domain comprising all the blade passages over 360 deg for the impeller and the diffuser. Three stable operating points are simulated along a speed line, and the full path to instability is investigated. The paper focusses first on the effects of the mass flow reduction on the flow topology at the inlet of both components. Then, a detailed analysis of stall inception mechanisms is proposed. It is shown that at the inlet of both components, the mass flow reduction induces boundary layer separation on the blade suction side, which results in a vortex tube having its upper end at the casing and its lower end at the blade wall. Some similarities with flows in axial compressor operating at stall condition are outlined. The stall inception process starts with the growth of the amplitude of a modal wave rotating in the vaneless space. As the flow in the compressor is subsonic, the wave propagates upstream and interacts with the impeller flow structure. This interaction leads to the drop in the impeller pressure ratio.


2021 ◽  
Author(s):  
Kazutoyo Yamada ◽  
Kosuke Kubo ◽  
Kenichiro Iwakiri ◽  
Yoshihiro Ishikawa ◽  
Hirotaka Higashimori

Abstract This paper discusses the unsteady effects associated with the impeller/diffuser interaction on the internal flow field and aerodynamic performance of a centrifugal compressor. In centrifugal compressors with a vaned diffuser, the flow field is inherently unsteady due to the influence of interaction between the impeller and the diffuser, and the unsteadiness of the flow field can often have a great influence on the aerodynamic performance of the compressor. Especially in high-load compressors, it is considered that large unsteady effects are produced on the compressor performance with a strong flow unsteadiness. The unsteady effect on aerodynamic performance of the compressor has not been fully revealed yet, and sometimes the steady-state RANS simulation finds it difficult to predict the compressor performance. In this study, numerical simulations have been conducted for a transonic centrifugal compressor with a vaned diffuser. The unsteady effects were clarified by comparing the numerical results between a single-passage steady-state RANS analysis and a full-annulus unsteady RANS analysis. The comparison of simulation results showed the difference in entropy generation in the impeller. The impingement of diffuser shock wave with the impeller pressure surface brought about a cyclic increase in the blade loading near the impeller trailing edge. Accordingly, with increasing tip leakage flow rate, a second tip leakage vortex was newly generated in the aft part of the impeller, which resulted in additional unsteady loss generation inside the impeller.


Author(s):  
Michael M. Cui

To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k-ε turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both unsteady flow field and overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both overall performance data and local flow field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow field quantities is defined. The methodology developed and data obtained in these studies can be applied to centrifugal compressor design and optimization.


Sign in / Sign up

Export Citation Format

Share Document