Fault Diagnosis of Rolling Bearings Using Data Mining Techniques and Boosting

Author(s):  
Muhammet Unal ◽  
Yusuf Sahin ◽  
Mustafa Onat ◽  
Mustafa Demetgul ◽  
Haluk Kucuk

Rolling bearings are key components in most mechanical facilities; hence, the diagnosis of their faults is very important in predictive maintenance. Up to date, vibration analysis has been widely used for fault diagnosis in practice. However, acoustic analysis is still a novel approach. In this study, acoustic analysis with classification is used for fault diagnosis of rolling bearings. First, Hilbert transform (HT) and power spectral density (PSD) are used to extract features from the original sound signal. Then, decision tree algorithm C5.0, support vector machines (SVMs) and the ensemble method boosting are used to build models to classify the instances for three different classification tasks. Performances of the classifiers are compared w.r.t. accuracy and receiver operating characteristic (ROC) curves. Although C5.0 and SVM show comparable performances, C5.0 with boosting classifier indicates the highest performance and perfectly discriminates normal instances from the faulty ones in each task. The defect sizes to create faults used in this study are notably small compared to previous studies. Moreover, fault diagnosis is done for rolling bearings operating at different loading conditions and speeds. Furthermore, one of the classification tasks incorporates diagnosis of five states including four different faults. Thus, these models, due to their high performance in classifying multiple defect scenarios having different loading conditions and speeds, can be readily implemented and applied to real-life situations to detect and classify even incipient faults of rolling bearings of any rotating machinery.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Md Arifuzzaman ◽  
Muhammad Aniq Gul ◽  
Kaffayatullah Khan ◽  
S. M. Zakir Hossain

There are several environmental factors such as temperature differential, moisture, oxidation, etc. that affect the extended life of the modified asphalt influencing its desired adhesive properties. Knowledge of the properties of asphalt adhesives can help to provide a more resilient and durable asphalt surface. In this study, a hybrid of Bayesian optimization algorithm and support vector regression approach is recommended to predict the adhesion force of asphalt. The effects of three important variables viz., conditions (fresh, wet and aged), binder types (base, 4% SB, 5% SB, 4% SBS and 5% SBS), and Carbon Nano Tube doses (0.5%, 1.0% and 1.5%) on adhesive force are taken into consideration. Real-life experimental data (405 specimens) are considered for model development. Using atomic force microscopy, the adhesive strength of nanoscales of test specimens is determined according to functional groups on the asphalt. It is found that the model predictions overlap with the experimental data with a high R2 of 90.5% and relative deviation are scattered around zero line. Besides, the mean, median and standard deviations of experimental and the predicted values are very close. In addition, the mean absolute Error, root mean square error and fractional bias values were found to be low, indicating the high performance of the developed model.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Gu ◽  
Jiawei Cao ◽  
Xin Song ◽  
Jian Yao

The condition monitoring of rotating machinery is always a focus of intelligent fault diagnosis. In view of the traditional methods’ excessive dependence on prior knowledge to manually extract features, their limited capacity to learn complex nonlinear relations in fault signals and the mixing of the collected signals with environmental noise in the course of the work of rotating machines, this article proposes a novel approach for detecting the bearing fault, which is based on deep learning. To effectively detect, locate, and identify faults in rolling bearings, a stacked noise reduction autoencoder is utilized for abstracting characteristic from the original vibration of signals, and then, the characteristic is provided as input for backpropagation (BP) network classifier. The results output by this classifier represent different fault categories. Experimental results obtained on rolling bearing datasets show that this method can be used to effectively diagnose bearing faults based on original time-domain signals.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lu Yu ◽  
Jianling Qu ◽  
Feng Gao ◽  
Yanping Tian

Faced with severe operating conditions, rolling bearings tend to be one of the most vulnerable components in mechanical systems. Due to the requirements of economic efficiency and reliability, effective fault diagnosis methods for rolling bearings have long been a hot research topic of rotary machinery fields. However, traditional methods such as support vector machine (SVM) and backpropagation neural network (BP-NN) which are composed of shallow structures trap into a dilemma when further improving their accuracies. Aiming to overcome shortcomings of shallow structures, a novel hierarchical algorithm based on stacked LSTM (long short-term memory) is proposed in this text. Without any preprocessing operation or manual feature extraction, the proposed method constructs a framework of end-to-end fault diagnosis system for rolling bearings. Beneficial from the memorize-forget mechanism of LSTM, features inherent in raw temporal signals are extracted hierarchically and automatically by stacking LSTM. A series of experiments demonstrate that the proposed model can not only achieve up to 99% accuracy but also outperform some state-of-the-art intelligent fault diagnosis methods.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 404 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Yanhe Xu ◽  
Kai Wang ◽  
Tie Chen

Rolling bearings are a vital and widely used component in modern industry, relating to the production efficiency and remaining life of a device. An effective and robust fault diagnosis method for rolling bearings can reduce the downtime caused by unexpected failures. Thus, a novel fault diagnosis method for rolling bearings by fine-sorted dispersion entropy and mutation sine cosine algorithm and particle swarm optimization (SCA-PSO) optimized support vector machine (SVM) is presented to diagnose a fault of various sizes, locations and motor loads. Vibration signals collected from different types of faults are firstly decomposed by variational mode decomposition (VMD) into sets of intrinsic mode functions (IMFs), where the decomposing mode number K is determined by the central frequency observation method, thus, to weaken the non-stationarity of original signals. Later, the improved fine-sorted dispersion entropy (FSDE) is proposed to enhance the perception for relationship information between neighboring elements and then employed to construct the feature vectors of different fault samples. Afterward, a hybrid optimization strategy combining advantages of mutation operator, sine cosine algorithm and particle swarm optimization (MSCAPSO) is proposed to optimize the SVM model. The optimal SVM model is subsequently applied to realize the pattern recognition for different fault samples. The superiority of the proposed method is assessed through multiple contrastive experiments. Result analysis indicates that the proposed method achieves better precision and stability over some relevant methods, whereupon it is promising in the field of fault diagnosis for rolling bearings.


2011 ◽  
Vol 284-286 ◽  
pp. 2461-2464
Author(s):  
Hai Lan Liu ◽  
Xiao Ping Li ◽  
Yan Nian Rui

Based on the research of the theory and the experiment of EMD and Intrinsic Modal Energy Entropy,the vibration signal of a rolling bearing in a Blowing Machine of a certain factory was measured when working. Then the signal was decomposed by EMD, its Intrinsic Modal Energy Entropy was calculated and used as fault feature. Finally, using a Support Vector Classification System, a satisfied effect of fault diagnosis of a rolling bearing in a Blowing Machine was got. The experiment had confirmed that the method was advanced, reliable and practical. A new method was provided for fault diagnosis of rolling bearings in some Blowing Machines.


2020 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Chunheng Zhao ◽  
Yi Li ◽  
Matthew Wessner ◽  
Chinmay Rathod ◽  
Pierluigi Pisu

Permanent magnet synchronous motor (PMSM) is a leading technology for electric vehicles (EVs) and other high-performance industrial applications. These challenging applications demand robust fault diagnosis schemes, but conventional strategies based on models, system knowledge, and signal transformation have limitations that degrade the agility of diagnosing faults. These methods require extremely detailed design and consideration to remain robust against noise and disturbances in the actual application. Recent advancements in artificial intelligence and machine learning have proven to be promising next-generation solutions for fault diagnosis. In this paper, a support-vector machine (SVM) utilizing sparse representation is developed to perform sensor fault diagnosis of a PMSM. A simulation model of the pertinent PMSM drive system for automotive applications is used to generate a set of labelled training example sets that the SVM uses to determine margins between normal and faulty operating conditions. The PMSM model includes input as a torque reference profile and disturbance as a constant road grade, against both of which faults must be detectable. Even with limited training, the SVM classifier developed in this paper is capable of diagnosing faults with a high degree of accuracy, suggesting that such methods are feasible for the demanding fault diagnosis challenge in PMSM.


2020 ◽  
Vol 10 (16) ◽  
pp. 5542 ◽  
Author(s):  
Rui Li ◽  
Chao Ran ◽  
Bin Zhang ◽  
Leng Han ◽  
Song Feng

Rolling bearings are fundamental elements that play a crucial role in the functioning of rotating machines; thus, fault diagnosis of rolling bearings is of great significance to reduce catastrophic failures and heavy economic loss. However, the vibration signals of rolling bearings are often nonlinear and nonstationary, resulting in difficulty for feature extraction and fault recognition. In this paper, a hybrid method for multiple fault diagnosis of rolling bearings is presented. The bearing vibration signals are decomposed with the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) to denoise and extract nonlinear entropy features. The nonlinear entropy features are further processed to select the more discriminative fault features and to reduce feature dimension. Then a multi-class intelligent recognition model based on ensemble support vector machine (ESVM) is constructed to diagnose different bearing fault modes as well as fault severities. The effectiveness of the proposed method is assessed via experimental case studies of rolling bearings under multiple operational conditions (i.e., speeds and loads). The results show that our method gives better diagnosis results as compared to some existing approaches.


Sign in / Sign up

Export Citation Format

Share Document