Synthesis of Shaped Noncircular Gear Using a Three-Linkage Computer Numerical Control Shaping Machine

Author(s):  
Fangyan Zheng ◽  
Lin Hua ◽  
Xinghui Han ◽  
Bo Li ◽  
Dingfang Chen

Gear shaping, commonly regarded as the most widely used machining method for cylindrical gear, is in fact an ideal manufacturing method for noncircular gear due to its merit of not being restricted by gear type or pitch curve in contrast to gear hobbing. However, concerning researches are mainly focused on the generation of noncircular straight external gear, paying rare attention to noncircular internal gear and noncircular helix gear. Considering that this paper, through using a three-linkage computer numerical control (CNC) shaping machine, aims to synthesize shaped noncircular gear, covering external, internal, straight, and helix gear. The mathematical model, a three-linkage model, is first established. The corresponding manufacturing process in practice is subsequently discussed. Finally, with practical shaping experiments, the correctness of the proposed model and the appropriateness of the manufacturing process are verified.

2013 ◽  
Vol 579-580 ◽  
pp. 300-304 ◽  
Author(s):  
Lian Xia ◽  
Da Zhu Li ◽  
Jiang Han

Elliptic family gears are commonly used in non-circular gears, which include elliptic gear, high-order gear, elliptic deformed gear and high-order deformed gear, thereinto high-order deformed gear can include the elliptic family gears through adjust its order and deformed coefficient. Because non-circular gear has different tooth profile in different position of pitch curve and there is difference in the left and right tooth profile of the same gear tooth, thus the CAD modeling of non-circular gear is difficult for these characteristics; but the precise model of non-circular gear has important significance to the realization of numerical control machining, kinematic simulation and relevant mechanical analysis. This paper deduce the corresponding pure rolling mathematical model based on the pure rolling contact theory that cylindrical gear and non-circular gear mesh in the end face, and realize the CAD modeling of non-circular straight and helical gears by letting the cylindrical gear and non-circular gear make solid geometry operation, which is suitable for pitch curve with convex and concave. The non-circular gear shaping methods with equal polar and equal arc length are simulated by setting different discrete polar angles, and the transmission ratio curve and the angular acceleration curve of driven gear are get through the kinematic simulation of gear pair, which realize the transmission performance analysis of elliptic family gear pair. The above research results can be applied to the modeling and kinematic performance analysis of other non-circular gears.


2005 ◽  
pp. 89-127

Abstract Metal removal processes for gear manufacture can be grouped into two general categories: rough machining (or gear cutting) and finishing (or high-precision machining). This chapter discusses the processes involved in machining for bevel and other gears. The chapter describes the type of gear as the major variable and discusses the machining methods best suited to specific conditions. Next, the chapter provides information on gear cutter material and nominal speeds and feeds for gear hobbing. Further, it describes the cutting fluids recommended for gear cutting and presents a comparison of steels for gear cutting. The operating principles of computer numerical control and hobbing machines are also covered. This is followed by sections that discuss the processes involved in grinding, honing, and lapping of gears. Finally, the chapter provides information on the superfinishing of gears.


Author(s):  
Yadan Zeng ◽  
Tonghui Li ◽  
Yelin Deng ◽  
Chris Yuan

Energy consumption of computer numerical control (CNC) machines is significant and various empirical models have been developed to model the specific energy consumption (SEC) of CNC machines. However, most of the models are developed for specific machines and hence have limited applications in manufacturing industry. In this research, a general empirical SEC model for milling machine at certain power level is developed based on actual cutting experimental data. In this model, stand-by power and spindle power are used in the SEC model for the first time. The material removal rate (MRR) is used to represent the cutting parameter. The proposed model is fitted by the regression analysis and validated using experimental data. Results show that the proposed model can be applied on various milling machines with an average absolute residual ratio of 6%. The model is also validated through a series of cutting experiments on a machine center, with an accuracy of 91.5%, for the SEC calculation.


1984 ◽  
Vol 106 (1) ◽  
pp. 56-62 ◽  
Author(s):  
R. Doraiswami ◽  
A. Gulliver

A digital controller for a closed loop computer numerical control machine demonstrating precision and rapidity in machining a given contour is proposed. The digital controller contains a digital filter which generates a copy of the reference input and the load torque disturbance signals. The reference inputs are both analytic and piecewise analytic signals. The closed loop system is stabilized using a digital stabilizer. The mathematical model of the process considers the lead-screw dynamics and the axial stiffness. Hybrid simulation of machining is used to compare conventional with proposed controllers. The effects of nonlinearities, noise, and parameter variation are considered in simulation.


2013 ◽  
Vol 27 (5) ◽  
pp. 1393-1405 ◽  
Author(s):  
Shilong Wang ◽  
Yong Yang ◽  
Xianguang Li ◽  
Jie Zhou ◽  
Ling Kang

Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


1977 ◽  
Vol 10 (16) ◽  
pp. 655-662
Author(s):  
A. Schuler ◽  
W. Oberreiter ◽  
H. Hoffmann

2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Xinqing Zhuang ◽  
Keliang Yan ◽  
Pan Gao ◽  
Yihua Liu

Anchor dragging is a major threat to the structural integrity of submarine pipelines. A mathematical model in which the mechanical model of chain and the bearing model of anchor were coupled together. Based on the associated flow rule, an incremental procedure was proposed to solve the spatial state of anchor until it reaches the ultimate embedding depth. With an indirect measurement method for the anchor trajectory, a model test system was established. The mathematical model was validated against some model tests, and the effects of two parameters were studied. It was found that both the ultimate embedding depth of a dragging anchor and the distance it takes to reach the ultimate depth increase with the shank-fluke pivot angle, but decrease as the undrained shear strength of clay increases. The proposed model is supposed to be useful for the embedding depth calculation and guiding the design of the pipeline burial depth.


Sign in / Sign up

Export Citation Format

Share Document