scholarly journals Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off

Author(s):  
Kevin Prieur ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Sébastien Candel

This article reports experiments carried out in the MICCA-spray combustor developed at EM2C laboratory. This system comprises 16 swirl spray injectors. Liquid n-heptane is injected by simplex atomizers. The combustion chamber is formed by two cylindrical quartz tubes allowing full optical access to the flame region and it is equipped with 12 pressure sensors recording signals in the plenum and chamber. A high-speed camera provides images of the flames and photomultipliers record the light intensity from different flames. For certain operating conditions, the system exhibits well defined instabilities coupled by the first azimuthal mode of the chamber at a frequency of 750 Hz. These instabilities occur in the form of bursts. Examination of the pressure and the light intensity signals gives access to the acoustic energy source term. Analysis of the phase fluctuations between the two signals is carried out using cross-spectral analysis. At limit cycle, large pressure fluctuations of 5000 Pa are reached, and these levels persist over a finite period of time. Analysis of the signals using the spin ratio indicates that the standing mode is predominant. Flame dynamics at the pressure antinodal line reveals a strong longitudinal pulsation with heat release rate oscillations in phase and increasing linearly with the acoustic pressure for every oscillation levels. At the pressure nodal line, the flames are subjected to large transverse velocity fluctuations leading to a transverse motion of the flames and partial blow-off. Scenarios and modeling elements are developed to interpret these features.

Author(s):  
Kevin Prieur ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Sébastien Candel

The present article reports original experiments carried out in the MICCA-Spray combustor developed at EM2C, CNRS and CentraleSupélec. This system comprises 16 swirl spray injectors. Liquid n-heptane is injected by hollow cone simplex atomizers. The combustion chamber is formed by two cylindrical quartz tubes allowing full optical access to the flame region and it is equipped with eight pressure sensors recording signals in the plenum and chamber. A high speed camera provides images of the flames and photomultipliers record the light intensity from different flames. For certain operating conditions, the system exhibits well defined instabilities coupled by the first azimuthal mode of the chamber at a frequency of about 750 Hz. These instabilities occur in the form of bursts with a moderate level of growth. Examination of the pressure and the light intensity signals gives access to the acoustic energy source term. Analysis of the phase between the two signals during the instability bursts (growth, limit cycle, decay) is carried out using cross-spectral analysis. At limit cycle, large amplitude of pressure oscillations are reached with peak values around 5000 Pa (or 5% of the mean pressure in the chamber), and these levels persist over a finite period of time. Detailed analysis of the signals using the spin ratio indicates that the standing mode is predominant. The chamber can exhibit a spinning mode but with a lower amplitude of acoustic fluctuation. Analysis of the flame dynamics at the pressure anti-nodal line reveals a strong longitudinal pulsation with heat release rate oscillations in phase and increasing linearly with the acoustic pressure even at the highest oscillation levels. At the pressure nodal line, the flames are subjected to large transverse velocity fluctuations leading to a transverse motion of the flames and partial blow-off. Scenarios and modeling elements are developed to interpret these features. To the best of our knowledge, this is the first time that azimuthal instabilities are characterized in a well-controlled annular combustor with swirled spray flames.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


2011 ◽  
Vol 681 ◽  
pp. 261-292 ◽  
Author(s):  
M. KEARNEY-FISCHER ◽  
J.-H. KIM ◽  
M. SAMIMY

Mach wave radiation is one of the better understood sources of jet noise. However, the exact conditions of its onset are difficult to determine and the literature to date typically explores Mach wave radiation well above its onset conditions. In order to determine the conditions for the onset of Mach wave radiation and to explore its behaviour during onset and beyond, three ideally expanded jets with Mach numbers Mj = 0.9, 1.3 and 1.65 and stagnation temperature ratios ranging over To/T∞ = 1.0–2.5 (acoustic Mach number 0.83–2.10) were used. Data are collected using a far-field microphone array, schlieren imaging and streamwise two-component particle image velocimetry. Using arc filament plasma actuators to force the jet provides an unprecedented tool for detailed examination of Mach wave radiation. The response of the jet to various forcing parameters (combinations of one azimuthal mode m = 0, 1 and 3 and one Strouhal number StDF = 0.09–3.0) is explored. Phase-averaged schlieren images clearly show the onset and evolution of Mach wave radiation in response to both changes in the jet operating conditions and forcing parameters. It is observed that Mach wave radiation is initiated as a coalescing of the near-field hydrodynamic pressure fluctuations in the immediate vicinity of the large-scale structures. As the jet exit velocity increases, the hydrodynamic pressure fluctuations coalesce, first into a curved wavefront, then flatten into the conical wavefronts commonly associated with Mach wave radiation. The results show that the largest and most coherent structures (e.g. forcing with m = 0 and StDF ~ 0.3) produce the strongest Mach wave radiation. Conversely, Mach wave radiation is weakest when the structures are the least coherent (e.g. forcing with m = 3 and StDF > 1.5).


Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Robert Sorge ◽  
Paul Uwe Thamsen ◽  
Lars Enghardt

Rotating instability (RI) occurs at off-design conditions in compressors, predominantly in configurations with large tip or hub clearance ratios of s* ≥3%. RI is the source of the blade tip vortex noise and a potential indicator for critical operating conditions like rotating stall and surge. The objective of this paper is to give more physical insight into the RI phenomenon using the analysis results of combined near-field measurements with high-speed particle image velocimetry (PIV) and unsteady pressure sensors. The investigation was pursued on an annular cascade with hub clearance. Both the unsteady flow field next to the leading edge as well as the associated rotating pressure waves were captured. A special analysis method illustrates the characteristic pressure wave amplitude distribution, denoted as “modal events” of the RI. Moreover, the slightly adapted method reveals the unsteady flow structures corresponding to the RI. Correlations between the flow profile, the dominant vortex structures, and the rotating pressure waves were found. Results provide evidence to a new hypothesis, implying that shear layer instabilities constitute the basic mechanism of the RI.


Author(s):  
A.V. Tyurin ◽  
A.V. Burmistrov ◽  
A.A. Raykov ◽  
S.I. Salikeev

This paper presents an analysis of the indicator power of an oil-free scroll vacuum pump based on the indicator diagrams obtained through high-speed pressure sensors. These values are compared with the results of calculations using a mathematical model of the pump working process. It is shown that the divergence of the calculated results and experimental values does not exceed 4%, which confirms the adequacy of the developed mathematical model. The total power of the scroll pump exceeds the indicator power by more than 2 times due to the friction losses between the face seals and disks of the reciprocal scroll elements, friction losses in the stuffing box seals and rolling bearings, as well as due to the coefficient of efficiency of the motor. The influence of the radial clearance between the scroll elements on the power consumption is considered. It is shown that at low pressures nearing the ultimate pressure, the power increases with the increased clearance, while at inlet pressures exceeding 40 kPa it decreases. The performed analysis can be used for selecting the optimal geometrical parameters of the scroll elements and increasing power efficiency of the pump depending on specific operating conditions.


2020 ◽  
pp. 004051752096075
Author(s):  
Xinchen Yu ◽  
Yi Li ◽  
Xuemei Ding

A high-speed video camera was used to track a tracer textile as it is tumbled among other textiles in a domestic tumble dryer under different operating conditions, with the aim of investigating the mechanisms by which the mechanical action is imposed on textiles and affects drying performance during drying. These mechanisms were first recognized by comparing the clothes drying process to other well-researched chemical engineering processes. From the observation of the recorded motion processes, cotton textile transverse motion can be divided into three categories and a motion index system was derived to characterize the type of motion undergone. The impact of textile transverse motion on drying performance was numerically discussed based on the results of an analysis of variance and regression analysis. Results indicated that textile dynamics with more complexity and flexibility tended to have more mixing, shortened distance of moisture migration inside the fabric layer and fewer wrinkles formed, resulting in higher potential to have a better drying performance.


Author(s):  
Yue-Yun Wang ◽  
Ibrahim Haskara

Engine exhaust backpressure is a critical parameter in the calculation of the volumetric efficiency and exhaust gas recirculation flow of an internal combustion engine. The backpressure also needs to be controlled to a presetting limit under high speed and load engine operating conditions to avoid damaging a turbocharger. In this paper, a method is developed to estimate exhaust pressure for internal combustion engines equipped with variable geometry turbochargers. The method uses a model-based approach that applies a coordinate transformation to generate a turbine map for the estimation of exhaust pressure. This estimation can substitute for an expensive pressure sensor, thus saving significant cost for production vehicles. On the other hand, for internal combustion engines that have already installed exhaust pressure sensors, this estimation can be used to generate residual signals for model-based diagnostics. Cumulative sum algorithms are applied to residuals based on multiple sensor fusion, and with the help of signal processing, the algorithms are able to detect and isolate critical failure modes of a turbocharger system.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. Even though the non-contacting seal is proved reliable; the ultra-thin gas film can still lead to a host of potential problems due to possible contact. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB [1], the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Maxime Coulaud ◽  
Jean Lemay ◽  
Claire Deschenes

Abstract Experimental analysis of a bulb turbine during the start-up sequence and in speed-no-load (SNL) operating conditions was performed in a closed-loop circuit. This study focuses on pressure fluctuations across the machine. The turbine was equipped with 26 pressure sensors on one runner blade and 16 in the stationary reference frame. Strain measurements were also performed on two other runner blades. The first section of this analysis focuses on SNL operating conditions using standard Fourier data processing. The results show that three rotating flow phenomena are only present close to the runner. One of them corresponds to the interblade vortex at f/fr=4.00, whereas the two others, which have subsynchronous runner frequencies, are consistent with a possible rotating stall. These phenomena, which exist predominantly on the suction side, have a strong influence on runner blade strain. The second section of the study concentrates on a time-frequency analysis using the Morlet wavelet transform. It reveals that the two subsynchronous flow structures appear at the end of the start-up and exhibit bistable behavior. As well, each of these phenomena acts differently on the blade. These phenomena also interact with the interblade vortex.


Sign in / Sign up

Export Citation Format

Share Document