Wet Steam Nonequilibrium Condensation Flow-Induced Vibrations of a Nuclear Turbine Blade

Author(s):  
Bing Guo ◽  
Weixiao Tang

Condensing flow induced vibration (CFIV) of the rotor blade is a tough problem for designers of nuclear turbines because nonequilibrium condensing flow excitation (NECFE) is hard to be directly modeled. Generally, in design, NECFE is assumed as equilibrium condensing flow excitation (ECFE), of which the pressure fluctuations caused by phase temperature difference (PTD) between gaseous and liquid are ignored. In this paper, a novel method to calculate the equivalent load of NECFE based on the principle of virtual work was proposed. This method could consider the effects of PTD-induced pressure fluctuations by simulating nonequilibrium condensation with ANSYS cfx, and improve computational efficiency. Once the equivalent NECFE load is determined, CFIV of the rotor blade, which was modeled as a pretwisted asymmetric cantilever beam, can then be predicted by the finite element method (FEM). Additionally, to estimate the effects of PTD-induced pressure fluctuations, comparisons between NECFE and ECFE as well as their induced vibrations were presented. Results show that PTD in nucleation area could change the position and type of shock waves, restructure the pressure distribution, as well as enhance the pressure fluctuations. Compared with ECFE, the frequency ingredients and amplitude of the equivalent NECFE load and its induced vibrations are increased. Specifically, the amplitude of the equivalent NECFE load is increased by 9.38%, 15.34%, and 7.43% in the tangential component, axial component, and torsion moment. The blade vibration responses induced by NECFE are increased by 11.66% and 19.94% in tangential and axial.

2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shijie Guo

This paper demonstrates the investigations on the blade vibration of a radial inflow micro gas turbine wheel. Firstly, the dependence of Young's modulus on temperature was measured since it is a major concern in structure analysis. It is demonstrated that Young's modulus depends on temperature greatly and the dependence should be considered in vibration analysis, but the temperature gradient from the leading edge to the trailing edge of a blade can be ignored by applying the mean temperature. Secondly, turbine blades suffer many excitations during operation, such as pressure fluctuations (unsteady aerodynamic forces), torque fluctuations, and so forth. Meanwhile, they have many kinds of vibration modes, typical ones being blade-hub (disk) coupled modes and blade-shaft (torsional, longitudinal) coupled modes. Model experiments and FEM analysis were conducted to study the coupled vibrations and to identify the modes which are more likely to be excited. The results show that torque fluctuations and uniform pressure fluctuations are more likely to excite resonance of blade-shaft (torsional, longitudinal) coupled modes. Impact excitations and propagating pressure fluctuations are more likely to excite blade-hub (disk) coupled modes.


Author(s):  
André Baramili ◽  
Ludovic Chatellier ◽  
Laurent David ◽  
Loïc Ancian

The present study focuses on the analysis of the flow-induced vibration phenomenon typically encountered on piping systems containing an elbow. The correlation between the turbulent flow through the elbow and the dynamic forcing it yields on the piping walls was assessed experimentally. A closed water loop containing a transparent elbow was designed in order to develop fully turbulent duct flow condition. Particle Image Velocimetry (PIV) was applied in the transparent zone in order to provide unsteady data on the flow dynamics through the elbow; simultaneously, wall pressure fluctuations were measured on and around the elbow. Several flow configurations were tested in order to obtain a large coupled database linking the flow features to the resulting dynamic excitation on the walls. Finally, Partial Least Square Regression (PLSR) was applied in order to harvest the correlated information contained in multiple pressure signals at multiple time-delays and build a relationship capable of estimating the temporal evolution of the velocity field using a set of measured wall pressure signals.


Author(s):  
Henry Jones

A technique for measuring turbine engine rotor blade vibrations has been developed as an alternative to conventional strain-gage measurement systems. Light probes are mounted on the periphery of the engine rotor casing to sense the precise blade passing times of each blade in the row. The timing data are processed on-line to identify (1) individual blade vibration amplitudes and frequencies, (2) interblade phases, (3) system modal definitions, and (4) blade static deflection. This technique has been effectively applied to both turbine engine rotors and plant rotating machinery.


Author(s):  
T M A Maksoud ◽  
M W Johnson

Distributions of normal and shear (Reynolds) stresses inside the vaneless diffuser of a low-speed centrifugal compressor are presented. The measurements were made using a triple hot-wire system and a phase lock loop sampling technique. Results were obtained on cross-sectional planes at eight radial stations between the impeller outlet and the diffuser exit at three different flowrates. The turbulence was highly anisotropic and became more so as the flowrate was increased. The tangential component of turbulent intensity was found to be significantly smaller than either the radial or axial component. The blade wake observed at the diffuser inlet decays very rapidly due to the strong tangential Reynolds stresses generated by the opposed secondary flows on either side of the wake. The passage wake decays very much more slowly and is still identifiable at the diffuser discharge.


Author(s):  
Michele Vascellari ◽  
Re´my De´nos ◽  
Rene´ Van den Braembussche

In transonic turbine stages, the exit static pressure field of the vane is highly non-uniform in the pitchwise direction. The rotor traverses periodically this non-uniform field and large static pressure fluctuations are observed around the rotor section. As a consequence the rotor blade is submitted to significant variations of its aerodynamic force. This contributes to the high cycle fatigue and may result in unexpected blade failure. In this paper an existing transonic turbine stage section is redesigned in the view of reducing the rotor stator interaction, and in particular the unsteady rotor blade forcing. The first step is the redesign of the stator blade profile to reduce the stator exit pitchwise static pressure gradient. For this purpose, a procedure using a genetic algorithm and an artificial neural network is used. Next, two new rotor profiles are designed and analysed with a quasi 3D Euler unsteady solver in order to investigate their receptivity to the shock interaction. One of the new profiles allows reducing the blade force variation by 50%.


Author(s):  
Tomomichi Nakamura ◽  
Tadashi Shiraishi ◽  
Yoshihide Ishitani ◽  
Hisato Watakabe ◽  
Hiromi Sago ◽  
...  

A 1/3 scale flow-induced vibration test facility that simulates the hot-leg piping of the JNC sodium-cooled fast reactor (JSFR) is used to investigate the pressure fluctuations of the pipe, where the high velocity fluid flows inside the piping. By the measurement of the pressure drop in the elbow piping while changing the Reynolds number, the similarity law of this model is confirmed. To evaluate the flow-induced vibrations for the hot-leg and cold-leg pipes, the random force distributions along the pipe and their correlations are measured with pressure sensors in a water loop. It is found that a flow velocity-dependent periodic phenomenon in the rear region of the elbow, and the maximum flow-induced random vibration force in the pipe are observed in the region of flow separation downstream the elbow. Finally, a design method is proposed with power spectral densities of the pressure fluctuations classified into four sections, correlation lengths in the axial direction divided into three sections, and with correlation lengths in the tangential direction into four sections.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Dayuan Ju ◽  
Qiao Sun

In wind turbine blade modeling, the coupling between rotor rotational motion and blade vibration has not been thoroughly investigated. The inclusion of the coupling terms in the wind turbine dynamics equations helps us understand the phenomenon of rotor oscillation due to blade vibration and possibly diagnose faults. In this study, a dynamics model of a rotor-blade system for a horizontal axis wind turbine (HAWT), which describes the coupling terms between the blade elastic movement and rotor gross rotation, is developed. The model is developed by using Lagrange's approach and the finite-element method has been adopted to discretize the blade. This model captures two-way interactions between aerodynamic wind flow and structural response. On the aerodynamic side, both steady and unsteady wind flow conditions are considered. On the structural side, blades are considered to deflect in both flap and edge directions while the rotor is treated as a rigid body. The proposed model is cross-validated against a model developed in the simulation software fatigue, aerodynamics, structure, and turbulence (fast). The coupling effects are excluded during the comparison since fast does not include these terms. Once verified, we added coupling terms to our model to investigate the effects of blade vibration on rotor movement, which has direct influence on the generator behavior. It is illustrated that the inclusion of coupling effects can increase the sensitivity of blade fault detection methods. The proposed model can be used to investigate the effects of different terms as well as analyze fluid–structure interaction.


2016 ◽  
Vol 248 ◽  
pp. 204-210 ◽  
Author(s):  
Marian Sikora

The purpose of this study was to develop a model of the dynamic behavior of a hydraulic vehicle double-tube shock absorber. The model accounts for the effects of compressibility, valve stiction, inertia, etc. and can be suitable for use in the analyses on flow-induced pressure fluctuations in the device. The author highlights all major variables to influence the output of the shock absorber, and then proceeds by performing a series of simulations using the developed model. The model is demonstrated to operate well in the large amplitude and low frequency range as well as the small amplitude and high frequency excitation operation regimes. The results are presented in the form of time histories of pressures in each fluid volume of the damper, flow rates through the valves, piston rod acceleration and force. Fast Fourier Transform (FFT) graphs are presented, too, in order to identify major components of the pressure fluctuation phenomena in frequency domain.


Sign in / Sign up

Export Citation Format

Share Document