Numerical Study on the Tribological Performance of Ring/Liner System With Consideration of Oil Transport

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Cheng Liu ◽  
Yanjun Lu ◽  
Yongfang Zhang ◽  
Sha Li ◽  
Jianxiong Kang ◽  
...  

The tribological performance of a compression ring-cylinder liner system (CRCL) is numerically studied. A thermal-mixed lubrication model is developed for the lubrication analysis of the CRCL with consideration of the cylinder liner deformation. An oil transport model coupled with a mass conservation cavitation algorithm is employed to predict the oil consumption and the transition between the fully flooded lubrication condition and starved lubrication condition. On this basis, the effects of the oil supply and cylinder liner deformation on the frictional characteristics are investigated under cold and warm engine conditions. The results show that the cylinder liner deformation and oil supply have great influence on the tribological performance of the CRCL. Better tribological performance and lower oil consumption can be obtained by reasonably controlling the oil supply.

1998 ◽  
Vol 120 (1) ◽  
pp. 199-208 ◽  
Author(s):  
S. D. Gulwadi

A numerical study of the interactions between hydrodynamic/boundary lubrication, oil transport, and radial dynamics of a piston ring using a mass-conserving (cavitation) algorithm is presented. The scheme outlined in this investigation facilitates the calculation of the volume of oil accumulating at the leading and trailing edges of the piston ring as it scrapes against the line. The calculation of this oil accumulation is important in the estimation of lubricating oil consumption in engines. The numerical procedure employed in this study is capable of depicting the transition between the various modes of piston ring lubrication (hydrodynamic, mixed, and boundary) over an engine cycle, including the detachment of oil film from the ring and its subsequent re-attachment. Additionally, the effects of (a) liner lubricant availability and (b) ring face profiles on the oil accumulation are also discussed.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204179 ◽  
Author(s):  
Yanjun Lu ◽  
Cheng Liu ◽  
Yongfang Zhang ◽  
Jiahui Wang ◽  
Kangrui Yao ◽  
...  

Author(s):  
T Tian

This paper describes the physics of two major dynamic behaviours of the piston rings, namely ring flutter and ring collapse, and their effects on gas flow and oil transport. The analysis was conducted by applying a theoretical model in a spark ignition engine and a heavy-duty diesel engine. Parameters that have great influence on these dynamic behaviours are discussed for these two different types of engine and different rings. Specifically, the importance of ring twist, torsional stiffness and ring-groove clearance to ring flutter are discussed in detail. For ring radial collapse, the paper presents a simple formula that determines value of the critical parameters to eliminate ring radial collapse. Emphases are placed on the importance of mechanical designs in changing the performance of the piston ring pack in blowby and oil consumption.


Author(s):  
Xianghui Meng ◽  
Youbai Xie

The cylinder liner-piston system of internal combustion engines is one of the key friction pairs running at the most rigor working conditions. Under the influence of elastohydrodynamic lubrication and contact between the piston skirt and the liner, the dynamic process of piston is a nonlinear and stiff problem difficult to be analyzed accurately and easily. To reach a stable and rapid convergence in analysis, the MEBDF method and the multigrid method are used to solve the piston-skirt elastohydrodynamic lubrication and contact problem. Firstly the solving process of the piston dynamics is analyzed based on the MEBDF method. Then the residual equations for the elastohydrodynamic lubrication pressure are built based on the multigrid method. And the solving method of the nonlinear residual equations is presented based on the quasi Newton-Raphson method. Finally the numerical simulation program is developed based on the MEBDF method and the multigrid method. The elastohydrodynamic lubrication and contact problem of the piston skirt-liner system is simply analyzed based on the simulation. The study in this paper can provide an effective method for tribological analysis and optimization of piston–liner system in the future.


Author(s):  
T Tian

The paper discusses several important processes that have great impact on the lubrication between the top two rings and the liner. The analysis is conducted on the basis of the calculation results on a heavy-duty (HD) diesel engine using theoretical models. Oil supply mechanisms to different liner regions are analysed, and emphasis is given to the oil transport to the top liner region that is found critical to friction, wear and oil consumption in HD diesel engines. Additionally, the paper discusses the oil supply to the second ring, its uncertainties and the effect on the prediction of the performance of the top two rings. Furthermore, the effects of dynamics of the piston and rings on friction, wear and oil transport are illustrated and the effects of bore distortion on oil transport are discussed. For practical purposes, a formula to describe the second ring running surface profile is given based on simple geometrical constraint. A new truncation method is rendered for plateau surface roughness in order to effectively use the existing mixed lubrication models.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181574 ◽  
Author(s):  
Cheng Liu ◽  
Yan-Jun Lu ◽  
Yong-Fang Zhang ◽  
Sha Li ◽  
Norbert Müller

Author(s):  
Chunxing Gu ◽  
Di Zhang

This paper proposes an efficient numerical approach to predict the initial running-in process of piston ring pack/cylinder liner system. A combined mixed lubrication and wear model coupled with an oil transport model was developed. In order to predict the hydrodynamic pressure efficiently, two improved methodologies, including the Fischer-Burmsister-Newton-Schur (FBNS) approach and the Grid Refinement (GR) strategy, were adopted. Meanwhile, in order to take into account the effect of skewness, Weibull distribution function was adopted to characterize the asperity height distribution. Predicting the wear of cylinder liner was based on the Archard's wear law. The influences of asperity plastic deformation and wear on asperity height distribution were considered. The results show that the developed model can well predict the initial running-in behavior of piston ring pack/cylinder liner system under an engine-like condition.


Author(s):  
Lipu Ning ◽  
Xianghui Meng ◽  
Youbai Xie

This paper presents a comprehensive lubrication model for piston skirt-liner system of internal combustion engines. In the model it is included that the effects of the surface roughness, the piston skirt surface geometry, the piston pin offset, the crankshaft offset, and the lubricant viscosity on the piston secondary motion and lubrication performance. Especially, the effects of the thermal and the elastic deformation of the piston skirt and the cylinder liner, and the piston skirt deformations due to the combustion pressure and the piston axial inertia, are considered as the key task in this study. The results show that the combustion force, the working temperature and the piston axial inertia all play important roles in the piston-skirt lubrication. Also, considering the elastic deformation of the piston skirt and the cylinder liner is beneficial to the prediction of piston-skirt lubrication more accurately. The developed program in this study can provide a useful tool for the analysis of the piston-liner system lubrication problem.


Sign in / Sign up

Export Citation Format

Share Document