The effect of three-dimensional deformations of a cylinder liner on the tribological performance of a piston ring–cylinder liner system

Author(s):  
Markus Söderfjäll ◽  
Patrik Isaksson ◽  
Andrew Spencer ◽  
Andreas Almqvist ◽  
Roland Larsson
Author(s):  
Xiaoming Ye ◽  
Guohua Chen ◽  
Maji Luo ◽  
Yankun Jiang

A three-dimensional, hydrodynamic mixed lubrication model has been developed to investigate the frictional performance of piston ring and cylinder liner contact. The model is based on the average Reynolds equation and asperity contact approach with the considerations of surface roughness, rupture location, blowby through the piston ring pack and nonaxisymmetry in circumferential direction of cylinder liner. The equation has been solved cyclically using the finite difference method in a fully flooded inlet boundary condition and a flow-continuity Reynolds boundary condition for cavitation outlet zone. The oil film thickness, hydrodynamic pressure distribution, friction force and friction heat generated at the piston ring/cylinder liner interface are determined as the function of crank angle position. The results show that the shape of the cylinder liner (out-of-roundness) significantly affects the lubrication performance of the piston ring pack. A heat transfer model has been presented to evaluate the effects of friction heat on the temperatures of piston and cylinder liner system. The friction heat is added on the piston ring/cylinder liner interface as the flux boundary condition. The temperature fields of piston and cylinder liner system are acquired by the FEM, which reveal the distribution of the friction heat in this system. The results show that the friction heat mainly affects the temperature on the region near the top ring groove of the piston ring pack. The effect decreases at the region away from the top ring groove, especially at the piston skirt. The effect of friction heat on the temperature of cylinder liner is smaller than that of piston ring pack.


Author(s):  
Liu Zhien ◽  
Jiang Yankun ◽  
Chen Guohua ◽  
Yang Wanli

Transient heat transfer model of the coupling 3-D moving piston assembly-lubricant film-liner system is successfully developed for predicting the temperature distributions in the component system of internal combustion chamber, in which the effect of the friction heat generated at the piston ring/cylinder liner interfaces has been taken into account. The finite element method (FEM) is employed in the model for establishing the heat transfer relation among the moving piston assembly-lubricant film-cylinder liner. The 3-D discrete model of the coupling system is obtained by hypothesizing the lubricant film as 1-D thermal resistances and the friction heat as heat flux boundary conditions. The allocation and distribution model of friction heat on piston ring pack and liner are also established. The 3-D coupling heat transfer model has been used to analyze the heat transfer of a gasoline engine.


Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

The cylinder liner surface finish, which is commonly produced using the honing technique, is an essential factor of engine performance. The characteristics of the texture features, including the cross-hatch angle, the plateau roughness and the groove depth, significantly affect the performance of the ring pack–cylinder liner system. However, due to the influence of the honed texture features, the surface roughness of the liner is not subject to Gaussian distribution. To simulate the mixed lubrication performance of the ring–liner system with non-Gaussian roughness, the combination of a two-scale homogenization technique and a deterministic asperities contact method is adopted. In this study, a one-dimensional homogenized mixed lubrication model is established to study the influence of groove parameters on the load-carrying capacity and the frictional performance of the piston ring–liner system. The ring profile, plateau roughness, and operating conditions are taken into consideration. The main findings are that for nonflat ring, shallow and wide groove textures are beneficial for friction reduction, and there exists an optimum groove density that makes the friction minimum; for flat ring, wide and sparse grooves help improving the tribological performance, and there exists an optimum groove depth that makes the friction minimum.


2019 ◽  
Vol 71 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Venkateswara Babu P. ◽  
Ismail Syed ◽  
Satish Ben Beera

Purpose In an internal combustion engine, piston ring-cylinder liner tribo pair is one among the most critical rubbing pairs. Most of the energy produced by an internal combustion engine is dissipated as frictional losses of which major portion is contributed by the piston ring-cylinder liner tribo pair. Hence, proper design of tribological parameters of piston ring-cylinder liner pair is essential and can effectively reduce the friction and wear, thereby improving the tribological performance of the engine. This paper aims to use surface texturing, an effective and feasible method, to improve the tribological performance of piston ring-cylinder liner tribo pair. Design/methodology/approach In this paper, influence of positive texturing (protruding) on friction reduction and wear resistance of piston ring surfaces was studied. The square-shaped positive textures were fabricated on piston ring surface by chemical etching method, and the experiments were conducted with textured piston ring surfaces against un-textured cylinder liner surface on pin-on-disc apparatus by continuous supply of lubricant at the inlet of contact zone. The parameters varied in this study are area density and normal load at a constant sliding speed. A comparison was made between the tribological properties of textured and un-textured piston ring surfaces. Findings From the experimental results, the tribological performance of the textured piston ring-cylinder liner tribo pair was significantly improved over a un-textured tribo pair. A maximum friction reduction of 67.6 per cent and wear resistance of 81.6 per cent were observed with textured ring surfaces as compared to un-textured ring surfaces. Originality/value This experimental study is helpful for better understanding of the potency of positive texturing on friction reduction and wear resistance of piston ring-cylinder liner tribo pair under lubricated sliding conditions.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Cheng Liu ◽  
Yanjun Lu ◽  
Yongfang Zhang ◽  
Sha Li ◽  
Jianxiong Kang ◽  
...  

The tribological performance of a compression ring-cylinder liner system (CRCL) is numerically studied. A thermal-mixed lubrication model is developed for the lubrication analysis of the CRCL with consideration of the cylinder liner deformation. An oil transport model coupled with a mass conservation cavitation algorithm is employed to predict the oil consumption and the transition between the fully flooded lubrication condition and starved lubrication condition. On this basis, the effects of the oil supply and cylinder liner deformation on the frictional characteristics are investigated under cold and warm engine conditions. The results show that the cylinder liner deformation and oil supply have great influence on the tribological performance of the CRCL. Better tribological performance and lower oil consumption can be obtained by reasonably controlling the oil supply.


Author(s):  
SR Bewsher ◽  
R Turnbull ◽  
M Mohammadpour ◽  
R Rahmani ◽  
H Rahnejat ◽  
...  

The paper presents transient thermal-mixed-hydrodynamics of piston compression ring–cylinder liner conjunction for a 4-cylinder 4-stroke gasoline engine during a part of the New European Drive Cycle (NEDC). Analyses are carried out with and without cylinder de-activation technology in order to investigate its effect upon the generated tribological conditions. In particular, the effect of cylinder deactivation upon frictional power loss is studied. The predictions show that overall power losses in the piston–ring cylinder system worsen by as much as 10% because of the increased combustion pressures and liner temperatures in the active cylinders of an engine operating under cylinder deactivation. This finding shows the down-side of this progressively employed technology, which otherwise is effective in terms of combustion efficiency with additional benefits for operation of catalytic converters. The expounded approach has not hitherto been reported in literature.


Sign in / Sign up

Export Citation Format

Share Document