scholarly journals Scalable Manufacturing of AgCu40(wt %)–WC Nanocomposite Microwires

2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Zeyi Guan ◽  
Injoo Hwang ◽  
Shuaihang Pan ◽  
Xiaochun Li

Nanoparticle reinforced metals recently emerge as a new class of materials to empower the functionality of metallic materials. There is a remarkable success in self-incorporation of nanoparticles to bulk metals for extraordinary properties. There is also a strong demand to use nanoparticles to enhance the performance of metallic microwires for exciting opportunities in numerous applications. Here, we show for the first time that silver–copper alloy (AgCu) reinforced by tungsten carbide (WC) (AgCu40 (wt %)–WC) was manufactured by a stir casting method utilizing a nanoparticle self-dispersion mechanism. The nanocomposite microwires were successfully fabricated using thermal drawing method. By introducing WC nanoparticles into bulk AgCu40 alloy, the Vickers microhardness was enhanced by 63% with 22 vol % WC nanoparticles, while the electrical conductivity dropped to 20.1% International Annealed Copper Standard (IACS). The microwires of AgCu40–10 vol % WC offered an ultimate tensile strength of 354 MPa, an enhancement of 74% from the pure alloy, and an elongation of 5.2%. The scalable manufacturing method provides a new pathway for the production of metallic nanocomposite micro/nanowires with outstanding performance for widespread applications, e.g., in biomedical, brazing, and electronics industries.

2014 ◽  
Vol 4 (3) ◽  
pp. 27-32
Author(s):  
Jeevan Singh Bisht ◽  
◽  
Akshay Dvivedi ◽  
Apurbba Kumar Sharma ◽  
◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Angela M. Kavanagh ◽  
Alysha G. Elliott ◽  
Bing Zhang ◽  
Soumya Ramu ◽  
...  

AbstractAntimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the ‘urgent threat’ pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


Author(s):  
A Zulfia ◽  
Krisiphala ◽  
D Ferdian ◽  
B W Utomo ◽  
D Dhaneswara
Keyword(s):  

2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


1995 ◽  
Vol 400 ◽  
Author(s):  
R.T. Malkhassian

AbstractA new technology for obtainment of amorphous single-component metals is presented.For the first time the reduction of molybdenum oxide with formation of its amorphous phase is realized in conditions of a given quantum-chemical technology by means of vibrationally excited to the third quantum level hydrogen molecules with 1.5 ± 0.2 eV energy. The evidences of formation of this nonequilibrium amorphous phase are presented along with certain physicochemical properties of the obtained amorphous molybdenum.A model is proposed for the origin of amorphous phase under the influence of nonequilibrium quantum-chemical technology.


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


Sign in / Sign up

Export Citation Format

Share Document