Asymptotic Stress Fields for Complete Contact Between Dissimilar Materials

2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Kisik Hong ◽  
M. D. Thouless ◽  
Wei Lu ◽  
J. R. Barber

We investigate the influence of material dissimilarity on the traction fields at the corners of a contact between an elastic right-angle wedge and an elastic half-plane. The local asymptotic fields are characterized in terms of the properties of the leading eigenvalue for cases of slip and stick as a function of the Dundurs bimaterial parameters α and β, and the coefficient of friction f. Permissible values of α and β are partitioned into two possible ranges, one where behavior is qualitatively similar to the case where the indenting wedge is rigid [α = 1] and the other where behavior is similar to the case where the materials are the same [α = β = 0]. The results give insight into the high local stresses at the edge of a contact between elastically dissimilar bodies and can also be used to evaluate the effectiveness of mesh refinement in corresponding finite element models.

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 638 ◽  
Author(s):  
Cyrus Amini ◽  
Ramón Jerez-Mesa ◽  
J. Antonio Travieso-Rodriguez ◽  
Jordi Llumà ◽  
Aida Estevez-Urra

Ball burnishing is a superfinishing operation whose objective is the enhancement of surface integrity of previously machined surfaces, hence its appropriateness to complement chip removal processes at the end of a production line. As a complex process involving plastic deformation, friction and three-dimensional interaction between solids, numerical solutions and finite element models have typically included a considerable amount of simplifications that represent the process partially. The aim of this paper is to develop a 3D numerical finite element model of the ball burnishing process including in the target workpiece real surface integrity descriptors resulting from a ball-end milled AISI 1038 surface. Specifically, its periodical topological features are used to generate the surface geometry and the residual stress tensor measured on a real workpiece is embedded in the target surface. Secondly, different models varying the effect of the coefficient of friction and the direction of application of burnishing passes with regards to the original milling direction are calculated. Results show that the resulting topology and residual stresses are independent of the burnishing direction. However, it is evident that the model outputs are highly influenced by the value of the coefficient of friction. A value of 0.15 should be implemented in order to obtain representative results through finite element models.


1997 ◽  
Vol 8 (1) ◽  
pp. 90-104 ◽  
Author(s):  
T.W.P. Korioth ◽  
A. Versluis

In this paper, we provide a review of mechanical finite element analyses applied to the maxillary and/or mandibular bone with their associated natural and restored structures. It includes a description of the principles and the relevant variables involved, and their critical application to published finite element models ranging from three-dimensional reconstructions of the jaws to detailed investigations on the behavior of natural and restored teeth, as well as basic materials science. The survey revealed that many outstanding FE approaches related to natural and restored dental structures had already been done 10-20 years ago. Several three-dimensional mandibular models are currently available, but a more realistic correlation with physiological chewing and biting tasks is needed. Many FE models lack experimentally derived material properties, sensitivity analyses, or validation attempts, and yield too much significance to their predictive, quantitative outcome. A combination of direct validation and, most importantly, the complete assessment of methodical changes in all relevant variables involved in the modeled system probably indicates a good FE modeling approach. A numerical method for addressing mechanical problems is a powerful contemporary research tool. FE analyses can provide precise insight into the complex mechanical behavior of natural and restored craniofacial structures affected by three-dimensional stress fields which are still very difficult to assess otherwise.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


2003 ◽  
Vol 125 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Masaya Kurokawa ◽  
Yoshitaka Uchiyama ◽  
Tomoaki Iwai ◽  
Susumu Nagai

Tribological properties of several kinds of polyoxymethylene (POM) composites were evaluated for the purpose of developing a polymeric tribomaterial especially suited for mating with aluminum parts having low surface hardness. POM composites containing small amounts of silicon carbide (SiC), POM/SiC; those containing a small amount of calcium octacosanonoate besides SiC, POM/SiC/Ca-OCA; and the one blended with 24 wt % of polytetrafluoroethylene, POM/PTFE(24); were injection-molded into pin specimens and their tribological properties were tested by means of a pin-on-disk type wear apparatus using an aluminum (A5056) mating disk in comparison with a 303 stainless steel (SUS303) disk. Evaluation was focused on observation of the sliding surfaces of the pin specimens and the mating disks by a scanning electron microscope and an optical microscope together with the measurement of surface roughness. In the case of mating against a SUS303 disk having high surface hardness, all pin specimens did not roughen the disk surfaces even after long time of rubbing. Only POM/PTFE(24) composite obviously made a transfer film on the disk surface, while the other composites made an extremely thin one on it. POM/SiC(0.1)/Ca-OCA(1) composite, containing SiC 0.1 wt. % and Ca-OCA 1 wt. %, was found to show the lowest coefficient of friction and the lowest wear rate forming extremely thin transfer film on the mating disk. On the other hand, against an A5056 disk which has lower surface hardness than that of SUS303 disk, unfilled POM and POM composites except POM/SiC(0.1)/Ca-OCA(1) composite roughened the disk surfaces. However, the sliding surface of the A5056 disk rubbed with POM/SiC(0.1)/Ca-OCA(1) composite was significantly smoother and that of the pin specimen was also quite smooth in comparison with other pin specimens. Further, when each POM composite was rubbed against the A5056 disk, formation of transfer film was not obvious on the disk surfaces. For POM/SiC(0.1)/Ca-OCA(1) composite, the wear rate was the lowest of all POM composites, and the coefficient of friction was as low level as 60 percent of that of unfilled POM, but slightly higher than that of POM/PTFE(24) composite. For POM/SiC(0.1)/Ca-OCA(1) composite, the nucleating effect of SiC and Ca-OCA, which accelerated the crystallization of POM during its injection molding to form a matrix containing fine spherulites, must have resulted in increasing the toughness of the matrix and lowering the wear rate. Also, the lubricant effect of Ca-OCA should have lowered the coefficient of friction of the same matrix for rubbing against aluminum mating disk. POM/SiC(0.1)/Ca-OCA(1) composite was concluded as an excellent tribomaterial for mating with aluminum parts.


2015 ◽  
Vol 798 ◽  
pp. 53-58
Author(s):  
Salahaddin M. Sahboun ◽  
Simon M. Barrans

In this paper a finite element technique to predict the torsional load capacity of V-band clamp joints is presented. The development of this complex, multi-step analysis is explained and the results compared with alternate theories which ignore or take account of transverse friction in the band to flange contact region. It is shown that accounting for transverse friction yields a better comparison with the finite element results for lower coefficients of friction whilst ignoring this component gives better results for higher coefficients of friction. Torsional load capacity is shown to increase with band diameter and T-bolt tension but to be less dependent on the coefficient of friction.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Ashutosh Roy ◽  
Bhargava Sista ◽  
Kumar Vemaganti

Abstract The complexity of modeling friction between rough surfaces has prompted many researchers to use Greenwood and Tripp’s sum surface assumption to simplify the analysis. This assumption approximates the contact between two rough surfaces as contact between their equivalent sum surface and a rigid plane. In this work, we develop detailed finite element models to test the sum surface assumption for surfaces with Gaussian and exponential autocorrelation functions. We consider surfaces with differing surface roughness and correlation length values. For each case, we conduct simulations of two rough surfaces interacting in compression followed by shear, and a corresponding equivalent surface model based on the sum surface assumption. Multiple realizations of each parameter combination are simulated to obtain a statistical picture of the responses. We find that (a) the sum surface assumption consistently under-predicts the static coefficient of friction and (b) the equivalent surface model is less accurate for surfaces with differing correlation length-to-surface roughness ratios.


2010 ◽  
Vol 44-47 ◽  
pp. 2931-2934
Author(s):  
Chun Ling Wu ◽  
Bang Yan Ye

Ultra-fine grained chips with higher hardness and strength than bulk can be produced by severe plastic deformation during orthogonal metal cutting. A finite element method was developed to characterize the distribution of stress, strain, strain rate and temperature in the deformation area at different rake angles and cutting velocities. The coefficient of friction in the tool-chip interface is approximately obtained according model of mean coefficient of friction which is based on experiments in any machining conditions. The formation mechanics of ultra-fine grained chip is discussed and effect of rake angle on microstructure of chips is highlighted. The results of experiment and modeling have shown that chip materials with ultra-fine grained and high hardness can be produced with more negative tool rake angle at some lower cutting velocity.


1958 ◽  
Vol 36 (5) ◽  
pp. 599-610 ◽  
Author(s):  
C. D. Niven

The friction on ice of some small inflated rubber tires was measured on a turntable in a cold room. When rolling-friction force was plotted against load, the relation was either linear or slightly curved away from the load axis; such curvature implies that Thirion's Law does not hold for rolling friction. On the other hand when sliding-friction force was plotted against load the curvature was toward the load axis as would be expected if Thirion's Law applied. The coefficient of friction can go as low as 0.01 or even lower for a hard-pumped tire when the temperature is near 0 °C, but at −1 °C. rolling friction on dry ice is quite appreciable. The results refer only to measurements at very slow speed.


Author(s):  
Yap Jun Heng ◽  
Nurul Farhana Mohd Yusof ◽  
Lee Ann Yen ◽  
Shazlina Abd Hamid ◽  
Nurul Nadzirah Mohd Yusof

Grease lubricants are widely used in rolling contact applications to reduce friction between two rolling surfaces. Improper lubrication may cause high contact stress and deformation to the bearings and lead to machine failure The purpose of this study is to investigate the coefficient of friction produced by newly developed palm oil-based grease and to investigate the contact characteristics in lubricated roller bearings. In this work, the coefficient of friction of new greases was evaluated experimentally and the values were compared with the conventional mineral oil-based grease to investigate the friction performance. The friction test was performed using a four-ball tester. The finite element model was developed based on the roller bearing geometry and the simulation was carried out the evaluate the contact characteristic. The experimental result shows that the palm oil grease formulation A had the least coefficient of friction, followed by palm oil grease formulation B, mineral grease and food grade grease. This indicates that palm oil-based grease has the potential to be applied in rolling contact applications due to low friction characteristics. Finite element analysis shows that the maximum von Mises stress and total deformation for frictional contact are higher than the frictionless contact. For the frictional contact analysis with various lubricant COF, similar values were obtained with von Mises stress at 400.69 MPa and 3.4033×10-4 mm deformation. The finding shows that the small difference in grease COF did not affect the rolling contact. The finding also shows that the newly developed biodegradable grease has a similar performance in terms of rolling contact friction and contact characteristic in a condition that the bearing is operating in normal condition.


Author(s):  
Ling Li ◽  
Le Kang ◽  
Shiyun Ma ◽  
Zhiqiang Li ◽  
Xiaoguang Ruan ◽  
...  

Fretting wear is a kind of material damage in contact surfaces caused by microrelative displacement between two bodies. It can change the profile of contact surfaces, resulting in loosening of fasteners or fatigue cracks. Finite element method is an effective method to simulate the evolution of fretting wear process. In most studies of fretting wear, the coefficient of friction was assumed to be constant to simplify model and reduce the difficulty of solving. However, fretting wear test showed that the coefficient of friction was a variable related to the number of fretting cycles. Therefore, this paper introduces the coefficient of friction as a function of the number of fretting cycles in numerical simulation. A wear model considering variable coefficient of friction is established by combining energy consumption model and adaptive grid technique. The nodes of contact surfaces are updated through the UMESHMOTION subroutine. The effects of constant coefficient of friction and variable coefficient of friction on fretting wear are analyzed by comparing the wear amount under different loading conditions. The results show that when compared with coefficient of friction model, fretting wear is obviously affected by variable coefficient of friction and the variable coefficient of friction model has a larger wear volume when the fretting is in partial slip condition and mixed slip condition. In gross slip condition, the difference of wear volume between variable coefficient of friction model and coefficient of friction model decreases with the increase in the displacement amplitudes.


Sign in / Sign up

Export Citation Format

Share Document