scholarly journals A Contact Characteristic of Roller Bearing with Palm Oil-based Grease Lubrication

Author(s):  
Yap Jun Heng ◽  
Nurul Farhana Mohd Yusof ◽  
Lee Ann Yen ◽  
Shazlina Abd Hamid ◽  
Nurul Nadzirah Mohd Yusof

Grease lubricants are widely used in rolling contact applications to reduce friction between two rolling surfaces. Improper lubrication may cause high contact stress and deformation to the bearings and lead to machine failure The purpose of this study is to investigate the coefficient of friction produced by newly developed palm oil-based grease and to investigate the contact characteristics in lubricated roller bearings. In this work, the coefficient of friction of new greases was evaluated experimentally and the values were compared with the conventional mineral oil-based grease to investigate the friction performance. The friction test was performed using a four-ball tester. The finite element model was developed based on the roller bearing geometry and the simulation was carried out the evaluate the contact characteristic. The experimental result shows that the palm oil grease formulation A had the least coefficient of friction, followed by palm oil grease formulation B, mineral grease and food grade grease. This indicates that palm oil-based grease has the potential to be applied in rolling contact applications due to low friction characteristics. Finite element analysis shows that the maximum von Mises stress and total deformation for frictional contact are higher than the frictionless contact. For the frictional contact analysis with various lubricant COF, similar values were obtained with von Mises stress at 400.69 MPa and 3.4033×10-4 mm deformation. The finding shows that the small difference in grease COF did not affect the rolling contact. The finding also shows that the newly developed biodegradable grease has a similar performance in terms of rolling contact friction and contact characteristic in a condition that the bearing is operating in normal condition.

Author(s):  
Yi Zhang ◽  
Wei Wang ◽  
Kun Liu ◽  
Baohong Tong ◽  
Zhaowen Hu ◽  
...  

High-strength boron steels are widely used in manufacturing the auto bodies and parts of light-weight vehicles, but the high rates of surface scratches and die wear have consistently occurred during hot stamping for these steels. For an in-depth understanding of the tribological characteristics at this interface, the frictional contact behavior and thermomechanical mechanisms of boron steel 22MnB5 against die steel H13 at 800 °C were studied through experiments and finite-element simulations. The coefficient of friction and worn surface topography were investigated by pin-on-disk sliding tests. A three-dimensional thermomechanical finite-element model of a friction pair was established to explore the interfacial dynamic variations. Experimental and simulation results show that severe elastic–plastic deformation occurred on the worn surface of the boron steel, whereas an increase in the load decreased the coefficient of friction within a certain range because the growth rate of shear force was slower than that of the normal force. When the finite-element model was changed from the gradual loading stage to the initial sliding stage, the tangential friction force further increased the plastic deformation on the surface of boron steel. The scratches and furrows were mainly caused by the compression and shear from asperities of the rough surface, as confirmed by the high-frictional-stress regions concentrated on the peaks and flanks of asperities. During the high-temperature and high-pressure experiments, the plasticized and softened surface materials of the boron steel adhered to the die surface readily, resulting in peeling and delamination.


2021 ◽  
Vol 9 (D) ◽  
pp. 24-28
Author(s):  
Hisham S. ElGabry ◽  
Salah A. Yousief ◽  
Amal H. Moubarak ◽  
Iman A. Eltaftazani ◽  
Mohamed El-Anwar ◽  
...  

BACKGROUND: Incomplete implant osseointegration may affect the choice of the type of attachment to ensure less amount of bone resorption, periods of maintenance, and longer implant/attachment life-time. AIM: The aim of this study was to evaluate, using 3D FE analysis (FEA), the influence of two different types of attachments on the rate of bone resorption, need for maintenance and implant/attachment life time in cases of unpredictable osseointegration in various bone types and using different implant angulations. METHODS: Six finite element models were prepared; three for the locator attachment while the other three for the ball attachment. Each of the three models simulates vertical implant and inclined implants by 10° and 20° degrees. Frictional contact between implant and cortical bone simulated the incomplete osseointegration scenario. RESULTS: Non-linear static analysis results showed that locator attachment and its cap may have longer time life in comparison with the ball attachment and its cap. CONCLUSIONS: Both attachments were safe for cortical and spongy bone, while the cortical bone receives less Von Mises stress by up to 33% with the increased implant angulation.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Mostafa Omran Hussein ◽  
Mohammed Suliman Alruthea

Abstract Objective The purpose of this study was to compare methods used for calculating heterogeneous patient-specific bone properties used in finite element analysis (FEA), in the field of implant dentistry, with the method based on homogenous bone properties. Materials and Methods In this study, three-dimensional (3D) computed tomography data of an edentulous patient were processed to create a finite element model, and five identical 3D implant models were created and distributed throughout the dental arch. Based on the calculation methods used for bone material assignment, four groups—groups I to IV—were defined. Groups I to III relied on heterogeneous bone property assignment based on different equations, whereas group IV relied on homogenous bone properties. Finally, 150 N vertical and 60-degree-inclined forces were applied at the top of the implant abutments to calculate the von Mises stress and strain. Results Groups I and II presented the highest stress and strain values, respectively. Based on the implant location, differences were observed between the stress values of group I, II, and III compared with group IV; however, no clear order was noted. Accordingly, variable von Mises stress and strain reactions at the bone–implant interface were observed among the heterogeneous bone property groups when compared with the homogenous property group results at the same implant positions. Conclusion Although the use of heterogeneous bone properties as material assignments in FEA studies seem promising for patient-specific analysis, the variations between their results raise doubts about their reliability. The results were influenced by implants’ locations leading to misleading clinical simulations.


Author(s):  
Huaidong Yang ◽  
Itzhak Green

The current work employs a two-dimensional plane strain finite element analysis to investigate the unidirectional sliding contact between a deformable half-cylinder and a deformable flat block. The unidirectional sliding is governed by a displacement-controlled action where the materials of the two contacting bodies are first set to identical steels at 20 ℃ and then to Inconel 617 and Incoloy 800H at 800 ℃. First, a normal interference (indentation) is applied, which is followed by unidirectional sliding. The von Mises stress distribution, plastic strain distribution, junction growth, normal force, tangential force, effective coefficient of friction, and scars on the surface of the block are obtained during the sliding motion. The leading edge of the contacting area and the bulk material under the leading edge experience large von Mises stresses. The large plastic strain is found on the surface of the block, and forms a “pocket” shape under the surface. The junction growth is also investigated, showing the direction of the growth is in the same direction of the tangential force that the weaker material experiences. The forces and the effective coefficient of friction are found to stabilize after a certain sliding distance, and the effective coefficient of friction converges to the coefficient of friction used in the model. Pileup is found on the surface of the block after a sufficient unidirectional sliding distance.


Author(s):  
Osezua Obehi Ibhadode ◽  
Ishaya Musa Dagwa ◽  
Akii Okonigbon Akhaehomen Ibhadode

Calibration curves of a multi-component dynamometer is of essence in machining operations in a lathe machine as they serve to provide values of force and stress components for cutting tool development and optimization. In this study, finite element analysis has been used to obtain the deflection and stress response of a two component cutting tool lathe dynamometer, for turning operation, when the cutting tool is subjected to cutting and thrust forces from 98.1N to 686.7N (10 to 70kg-wts), at intervals of 98.1N(10kg-wt). By obtaining the governing equation, modeling the dynamometer assembly, defining boundary conditions, generating the assembly mesh, and simulating in Inventor Professional; horizontal and vertical components of deflection by the dynamometer were read off for three different loading scenarios. For these three loading scenarios, calibration plots by experiment compared with plots obtained from simulation by finite element analysis gave accuracies of 79%, 95%, 84% and 36%, 57%, 63% for vertical and horizontal deflections respectively. Also, plots of horizontal and vertical components of Von Mises stress against applied forces were obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Sign in / Sign up

Export Citation Format

Share Document