Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Nur Alom ◽  
Ujjwal K. Saha

The elliptical-bladed Savonius wind turbine rotor has become a subject of interest because of its better energy capturing capability. Hitherto, the basic parameters of this rotor such as overlap ratio, aspect ratio, and number of blades have been studied and optimized numerically. Most of these studies estimated the torque and power coefficients (CT and CP) at given flow conditions. However, the two important aerodynamic forces, viz., the lift and the drag, acting on the elliptical-bladed rotor have not been studied. This calls for a deeper investigation into the effect of these forces on the rotor performance to arrive at a suitable design configuration. In view of this, at the outset, two-dimensional (2D) unsteady simulations are conducted to find the instantaneous lift and drag forces acting on an elliptical-bladed rotor at a Reynolds number (Re) = 0.892 × 105. The shear stress transport (SST) k–ω turbulence model is used for solving the unsteady Reynolds averaged Navier–Stokes equations. The three-dimensional (3D) unsteady simulations are then performed which are then followed by the wind tunnel experiments. The drag and lift coefficients (CD and CL) are analyzed for 0–360 deg rotation of rotor with an increment of 1 deg. The total pressure, velocity magnitude, and turbulence intensity contours are obtained at various angles of rotor rotation. For the elliptical-bladed rotor, the average CD, CL, and CP, from 3D simulation, are found to be 1.31, 0.48, and 0.26, respectively. The average CP for the 2D elliptical profile is found to be 0.34, whereas the wind tunnel experiments demonstrate CP to be 0.19.

Author(s):  
W. R. Briley ◽  
D. V. Roscoe ◽  
H. J. Gibeling ◽  
R. C. Buggeln ◽  
J. S. Sabnis ◽  
...  

Three-dimensional solutions of the ensemble-averaged Navier-Stokes equations have been computed for a high-turning turbine rotor passage, both with and without tip clearance effects. The geometry is Pratt & Whitney’s preliminary design for the Generic Gas Generator Turbine (GGGT), having an axial chord of 0.5 inch and turning angle of about 160 degrees. The solutions match the design Reynolds number of 3x 106/inch and design inflow/outflow distributions of flow quantities. The grid contains 627,000 points, including 20 radial points in the clearance gap of 0.015 inch, and has a minimum spacing of 10−4 inch adjacent to all surfaces. The solutions account for relative motion of the blade and shroud surfaces and include a backstep on the shroud. Computed results are presented which show the general flow behavior, especially near the tip clearance and backstep regions. The results are generally consistent with experimental observations for other geometries having thinner blades and smaller turning angles. The leakage flow includes some fluid originally in the freestream at 91 percent span. Downstream, the leakage flow behaves as a wall jet directed at 100 degrees to the main stream, with total pressure and temperature higher than the freestream. Radial distributions of circumferentially-averaged flow quantities are compared for solutions with and without tip leakage flow. Two-dimensional solutions are also presented for the mid-span blade geometry for design and off-design inflow angles.


2010 ◽  
Author(s):  
Oliver Fischer ◽  
Timo Kuthada ◽  
Edzard Mercker ◽  
Jochen Wiedemann ◽  
Bradley Duncan

2007 ◽  
Vol 339 ◽  
pp. 377-381
Author(s):  
Xiao Quan Zhang ◽  
L. Tian

Micro Air Vehicles (MAVs) are catching more and more attentions for their broad application in civilian and military fields. Since the theories on the aerodynamics of low Reynolds number are not maturely presented and the wind-tunnel experiments cost long periods and great expenses. The numerical simulation based on computational fluid dynamics (CFD) is a good method to choose. Through three-dimensional simulation of the wings, the aerodynamic characteristics of the flows around MAVs can be easily obtained. The tip vortices produced around low-Reynolds-number and low-aspect-ratio wings can increase the lift and stall angles. The result of numerical simulation can be used as references of theory analysis and wind-tunnel experiments.


2002 ◽  
Vol 18 ◽  
pp. 725-730
Author(s):  
Kinji SEKITA ◽  
Tatsuki HAYASHI ◽  
Hirokazu ISHIKAWA ◽  
Atsushi YAMASHITA ◽  
Nobuyuki Hayashi ◽  
...  

Author(s):  
Yeongbin Lee ◽  
Minho Kwak ◽  
Kyu Hong Kim ◽  
Dong-Ho Lee

In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.


2017 ◽  
Vol 83 (852) ◽  
pp. 17-00025-17-00025 ◽  
Author(s):  
Keiichi HIROAKI ◽  
Nobuhito KAWAI ◽  
Masahiro WATANABE

2021 ◽  
Vol 15 ◽  
pp. 16-21
Author(s):  
D. G. Baek ◽  
J. H. Jung ◽  
H. S. Yoon

This study numerically carried out the propeller open water test (POW) by solving Navier-Stokes equations governing the three-dimensional unsteady incompressible viscous flow with the turbulence closure model of the Κ-ω SST model. Numerical simulations were performed at wide range of advance ratios. A great difference of velocity magnitude between the inner region and the outer region of the slipstream tube forms the thick and large velocity gradient which originates from the propeller tip and develops along the downstream. Eventually, the strong shear layer appears and plays the role of the slipstream boundary. As the advance ratio increases, the vortical structures originated from the propeller tips quickly decay. The contraction of the vortices trace is considerable with decreasing the advance ratio.


Author(s):  
R. Heider ◽  
J. M. Duboue ◽  
B. Petot ◽  
G. Billonnet ◽  
V. Couaillier ◽  
...  

A 3D Navier-Stokes investigation of a high pressure turbine rotor blade including tip clearance effects is presented. The 3D Navier-Stokes code developed at ONERA solves the three-dimensional unsteady set of mass-averaged Navier-Stokes equations by the finite volume technique. A one step Lax-Wendroff type scheme is used in a rotating frame of reference. An implicit residual smoothing technique has been implemented, which accelerates the convergence towards the steady state. A mixing length model adapted to 3D configurations is used. The turbine rotor flow is calculated at transonic operating conditions. The tip clearance effect is taken into account. The gap region is discretized using more than 55,000 points within a multi-domain approach. The solution accounts for the relative motion of the blade and casing surfaces. The total mesh is composed of five sub-domains and counts 710,000 discretization points. The effect of the tip clearance on the main flow is demonstrated. The calculation results are compared to a 3D inviscid calculation, without tip clearance.


1999 ◽  
Author(s):  
Yen-Sen Chen ◽  
Jiwen Liu ◽  
Hong Wei

Abstract The objective of this study is to develop analytical codes to support the design effort of the Shooting Star Flight Experiment’s rocket engine. Numerical models can augment the design effort by providing insight into fluid dynamics issues. Then, the design team can utilize the developed code to assess the design parameters and the engine performance as well as other issues related to thermal propulsion. The physical models developed in this study are: (a) a radiation model based on a GRASP code for general multi-block curvilinear coordinates and with a time accurate Crank-Nicholson marching scheme for heat conduction to model the absorber component of the engine; and (b) a fluid dynamics computational model using the Navier-Stokes equations, porosity factors and drag forces terms for simple one-dimensional simulations to complete three-dimensional modeling of the Shooting Star Engine internal flows.


Sign in / Sign up

Export Citation Format

Share Document